Vague Lie ideals of Lie algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 54-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we have introduced the notion of vague Lie ideal and have studied their related properties. The cartesian products of vague Lie ideals are discussed. In particular, the Lie homomorphisms between the vague Lie ideals of a Lie algebra and the relationship between the domains and the co-domains of the vague Lie ideals under these Lie homomorphisms are investigated.
@article{BASM_2011_3_a4,
     author = {D. R. Prince Williams and Arsham Borumand Saeid},
     title = {Vague {Lie} ideals of {Lie} algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {54--68},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/}
}
TY  - JOUR
AU  - D. R. Prince Williams
AU  - Arsham Borumand Saeid
TI  - Vague Lie ideals of Lie algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 54
EP  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/
LA  - en
ID  - BASM_2011_3_a4
ER  - 
%0 Journal Article
%A D. R. Prince Williams
%A Arsham Borumand Saeid
%T Vague Lie ideals of Lie algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 54-68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/
%G en
%F BASM_2011_3_a4
D. R. Prince Williams; Arsham Borumand Saeid. Vague Lie ideals of Lie algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 54-68. http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/

[1] Akram M., Shum K. P., “Vague Lie subalgebras over a vague field”, Quasigroups and Related Systems, 17:2 (2009), 141–156 | MR

[2] Akram M., Dudek W. A., “Interval-valued intuitionistic fuzzy Lie ideals of Lie Algebras”, World Applied Sciences Journal, 7:7 (2009), 812–819

[3] Akram M., “Anti fuzzy Lie ideals of Lie algebras”, Quasigroups and Related Systems, 14:2 (2006), 123–132 | MR | Zbl

[4] Akram M., “Generalized fuzzy Lie subalgebras”, Journal of Generalized Lie Theory and Applications, 24:2 (2008), 261–268 | DOI | MR

[5] Akram M., Shum K. P., “Redefined fuzzy Lie subalgebras”, Quasigroups and Related Systems, 16:2 (2008), 119–132 | MR | Zbl

[6] Akram M., Shum K. P., “Intuitionistic fuzzy Lie algebras”, Southeast Asian Bull. Math., 31:5 (2007), 843–855 | MR | Zbl

[7] Biswas R., “Vague groups”, Int. Journal of computational cognition, 4:2 (2006), 20–23

[8] Borumand Saeid A., “Vague BCI/BCK-algebras”, Opuscula Math., 29:2 (2009), 177–186 | MR | Zbl

[9] Coelho P., Nunes U., “Lie algebra application to mobile robot control: a tutorial”, Robotica, 21 (2003), 483–493 | DOI

[10] Davvaz B., “Fuzzy Lie algebras”, Intern. J. Appl. Math., 6 (2001), 449–461 | MR | Zbl

[11] Gau W. L., Buechrer D. J., “Vague sets”, IEEE Transaction on Systems, Man and Cybernetics, 23 (1993), 610–614 | DOI | Zbl

[12] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972 | MR | Zbl

[13] Kim C. G., Lee D. S., “Fuzzy Lie ideals and fuzzy Lie subalgebras”, Fuzzy Sets and Systems, 94 (1998), 101–107 | DOI | MR | Zbl

[14] Keyun Q., Quanxi Q., Chaoping C., “Some properties of fuzzy Lie algebras”, J. Fuzzy Math., 9 (2001), 985–989 | MR | Zbl

[15] Katsaras A. K., Liu D. B., “Fuzzy vector spaces and fuzzy topological vector spaces”, J. Math. Anal. Appl., 58 (1977), 135–146 | DOI | MR | Zbl

[16] Rosenfeld A., “Fuzzy groups”, J. Math. Anal. Appl., 35 (1971), 512–517 | DOI | MR | Zbl

[17] Yehia S. E., “Fuzzy ideals and fuzzy subalgebras of Lie algebras”, Fuzzy Sets and Systems, 80 (1996), 237–244 | DOI | MR | Zbl

[18] Zadeh L. A., “Fuzzy sets”, Information and Control, 8 (1965), 338–353 | DOI | MR | Zbl