Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2011_3_a4, author = {D. R. Prince Williams and Arsham Borumand Saeid}, title = {Vague {Lie} ideals of {Lie} algebras}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {54--68}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/} }
TY - JOUR AU - D. R. Prince Williams AU - Arsham Borumand Saeid TI - Vague Lie ideals of Lie algebras JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2011 SP - 54 EP - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/ LA - en ID - BASM_2011_3_a4 ER -
D. R. Prince Williams; Arsham Borumand Saeid. Vague Lie ideals of Lie algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2011), pp. 54-68. http://geodesic.mathdoc.fr/item/BASM_2011_3_a4/
[1] Akram M., Shum K. P., “Vague Lie subalgebras over a vague field”, Quasigroups and Related Systems, 17:2 (2009), 141–156 | MR
[2] Akram M., Dudek W. A., “Interval-valued intuitionistic fuzzy Lie ideals of Lie Algebras”, World Applied Sciences Journal, 7:7 (2009), 812–819
[3] Akram M., “Anti fuzzy Lie ideals of Lie algebras”, Quasigroups and Related Systems, 14:2 (2006), 123–132 | MR | Zbl
[4] Akram M., “Generalized fuzzy Lie subalgebras”, Journal of Generalized Lie Theory and Applications, 24:2 (2008), 261–268 | DOI | MR
[5] Akram M., Shum K. P., “Redefined fuzzy Lie subalgebras”, Quasigroups and Related Systems, 16:2 (2008), 119–132 | MR | Zbl
[6] Akram M., Shum K. P., “Intuitionistic fuzzy Lie algebras”, Southeast Asian Bull. Math., 31:5 (2007), 843–855 | MR | Zbl
[7] Biswas R., “Vague groups”, Int. Journal of computational cognition, 4:2 (2006), 20–23
[8] Borumand Saeid A., “Vague BCI/BCK-algebras”, Opuscula Math., 29:2 (2009), 177–186 | MR | Zbl
[9] Coelho P., Nunes U., “Lie algebra application to mobile robot control: a tutorial”, Robotica, 21 (2003), 483–493 | DOI
[10] Davvaz B., “Fuzzy Lie algebras”, Intern. J. Appl. Math., 6 (2001), 449–461 | MR | Zbl
[11] Gau W. L., Buechrer D. J., “Vague sets”, IEEE Transaction on Systems, Man and Cybernetics, 23 (1993), 610–614 | DOI | Zbl
[12] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972 | MR | Zbl
[13] Kim C. G., Lee D. S., “Fuzzy Lie ideals and fuzzy Lie subalgebras”, Fuzzy Sets and Systems, 94 (1998), 101–107 | DOI | MR | Zbl
[14] Keyun Q., Quanxi Q., Chaoping C., “Some properties of fuzzy Lie algebras”, J. Fuzzy Math., 9 (2001), 985–989 | MR | Zbl
[15] Katsaras A. K., Liu D. B., “Fuzzy vector spaces and fuzzy topological vector spaces”, J. Math. Anal. Appl., 58 (1977), 135–146 | DOI | MR | Zbl
[16] Rosenfeld A., “Fuzzy groups”, J. Math. Anal. Appl., 35 (1971), 512–517 | DOI | MR | Zbl
[17] Yehia S. E., “Fuzzy ideals and fuzzy subalgebras of Lie algebras”, Fuzzy Sets and Systems, 80 (1996), 237–244 | DOI | MR | Zbl
[18] Zadeh L. A., “Fuzzy sets”, Information and Control, 8 (1965), 338–353 | DOI | MR | Zbl