Serial rings and their generalizations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 3-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of results on the theory of semiprime semidistributive rings, in particular, serial rings. Besides this we prove that a serial ring is Artinian if and only if some power of its Jacobson radical is zero. Also we prove that a serial ring is Noetherian if and only if the intersection of all powers of Jacobson radical is zero. These two theorems hold for semiperfect semidistributive rings.
@article{BASM_2011_1_a0,
     author = {Vladimir Kirichenko and Makar Plakhotnyk},
     title = {Serial rings and their generalizations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--27},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2011_1_a0/}
}
TY  - JOUR
AU  - Vladimir Kirichenko
AU  - Makar Plakhotnyk
TI  - Serial rings and their generalizations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2011
SP  - 3
EP  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2011_1_a0/
LA  - en
ID  - BASM_2011_1_a0
ER  - 
%0 Journal Article
%A Vladimir Kirichenko
%A Makar Plakhotnyk
%T Serial rings and their generalizations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2011
%P 3-27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2011_1_a0/
%G en
%F BASM_2011_1_a0
Vladimir Kirichenko; Makar Plakhotnyk. Serial rings and their generalizations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2011), pp. 3-27. http://geodesic.mathdoc.fr/item/BASM_2011_1_a0/