Vague $BF$-algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 11-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by using the concept of vague sets and $BF$-algebra we introduce the notions of vague $BF$-algebra. After that we state and prove some theorems in vague $BF$-algebras, $\alpha$-cut and vague-cut. The relationship between these notions and crisp subalgebras are studied.
@article{BASM_2010_3_a1,
     author = {A. R. Hadipour and A. Borumand Saeid},
     title = {Vague $BF$-algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {11--22},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a1/}
}
TY  - JOUR
AU  - A. R. Hadipour
AU  - A. Borumand Saeid
TI  - Vague $BF$-algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 11
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_3_a1/
LA  - en
ID  - BASM_2010_3_a1
ER  - 
%0 Journal Article
%A A. R. Hadipour
%A A. Borumand Saeid
%T Vague $BF$-algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 11-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_3_a1/
%G en
%F BASM_2010_3_a1
A. R. Hadipour; A. Borumand Saeid. Vague $BF$-algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 11-22. http://geodesic.mathdoc.fr/item/BASM_2010_3_a1/

[1] Biswas R., “Vague groups”, Internat. J. Comput. Cognition, 4:2 (2006), 20–23

[2] Borumand Saeid A., Rezvani M. A., “On fuzzy $BF$-algebras”, Int. Math. Forum, 4:1 (2009), 13–25 | MR | Zbl

[3] Gau W. L., Buehrer D. J., “Vague sets”, IEEE Transactions on Systems, Man and Cybernetics, 23 (1993), 610–614 | DOI | Zbl

[4] Hajek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998 | MR | Zbl

[5] Haveshki M., Borumand Saeid A., Eslami E., “Some types of filters in $BL$-algebras”, Soft Computing, 10 (2006), 657–664 | DOI | Zbl

[6] Huang Y. S., $BCI$-algebra, Science Press, China, 2006

[7] Imai Y., Iseki K., “On axiom systems of propositional calculi. XIV”, Proc. Japan Academy, 42 (1966), 19–22 | DOI | MR | Zbl

[8] Iseki K., “An algebra related with a propositional calculus”, Proc. Japan Academy, 42 (1966), 26–29 | DOI | MR | Zbl

[9] Iseki K., Tanaka S., “An introduction to the theory of $BCK$-algebras”, Math. Japonica, 23:1 (1978), 1–26 | MR | Zbl

[10] Meng J., Jun Y. B., $BCK$-algebras, Kyungmoon Sa Co., Korea, 1994 | MR | Zbl

[11] Javadi Kia P., Tabatabaee Far A., Omid M., Alimardani R., Naderloo L., “Intelligent Control Based Fuzzy Logic for Automation of Greenhouse Irrigation System and Evaluation in Relation to Conventional System”, World Applied Sciences J., 6:1 (2009), 16–23 | MR

[12] Walendziak A., “On $BF$-algebras”, Math. Slovaca, 57:2 (2007), 119–128 | DOI | MR | Zbl

[13] Zadeh L. A., “Fuzzy sets”, Inform. and Control, 8 (1965), 338–353 | DOI | MR | Zbl

[14] Zadeh L. A., “The concept of a linguistic variable and its application to approximate reasoning-I”, Inform. and Control, 8 (1975), 199–249 | MR | Zbl