A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 29-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the action of the group $Aff(2,\mathbb R)$ of affine transformations and time rescaling on real planar quadratic differential systems. Via affine invariant conditions we give a complete stratification of this family of systems according to the dimension $\mathcal D$ of affine orbits proving that $3\le\mathcal D\le6$. Moreover we give a complete topological classification of all the systems located on the orbits of dimension $\mathcal D\le5$ constructing the affine invariant criteria for the realization of each of 49 possible topologically distinct phase portraits.
@article{BASM_2009_2_a2,
     author = {N. Gherstega and V. Orlov and N. Vulpe},
     title = {A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {29--54},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_2_a2/}
}
TY  - JOUR
AU  - N. Gherstega
AU  - V. Orlov
AU  - N. Vulpe
TI  - A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 29
EP  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_2_a2/
LA  - en
ID  - BASM_2009_2_a2
ER  - 
%0 Journal Article
%A N. Gherstega
%A V. Orlov
%A N. Vulpe
%T A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 29-54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_2_a2/
%G en
%F BASM_2009_2_a2
N. Gherstega; V. Orlov; N. Vulpe. A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 29-54. http://geodesic.mathdoc.fr/item/BASM_2009_2_a2/

[1] Popa M. N., Algebraic methods for differential systems, Seria Matematică Aplicată şi Industrială, 15, Editura the Flower Power, Universitatea din Piteşti, 2004 (in Romanian) | MR | Zbl

[2] Sibirsky K. S., Introduction to algebraic theory of invariants of differential equations, Stiinta, Chisinau, 1982 (in Russian); 1988 (in English) | Zbl

[3] Olver P. J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR

[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: a study via the translation invariants, Report 96-90, Delft University of Technology, Delft, 1996

[5] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl

[6] Boularas D., “Computation of affine covariants of quadratic bivariate differential systems”, J. Complexity, 16:4 (2000), 691–715 | DOI | MR | Zbl

[7] Gherstega N., Orlov V., “Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 2(57), 122–126 | MR | Zbl

[8] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of at least five total multiplicity”, Qualitative Theory of Dynamical Systems, 5 (2004), 135–194 | DOI | MR | Zbl

[9] Schlomiuk D., Vulpe N., “Planar quadratic differential systems with invariant straight lines of total multiplicity four”, Nonlinear Anal., 68:4 (2008), 681–715 | DOI | MR | Zbl

[10] Schlomiuk D., Vulpe N., “The full study of planar quadratic differential systems possessing a line of singularities at infinity”, J. Dynam. Differential Equations, 20 (2008), 737–775 | DOI | MR | Zbl

[11] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic systems with invariant lines of total multiplicity four”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, no. 1(56), 27–83 | MR | Zbl

[12] Schlomiuk D., Vulpe N., “Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity”, Rocky Mountain J. Math., 38 (2008), 2015–2076 | DOI | MR

[13] Baltag V. A., Vulpe N. I., “Total multiplicity of all finite critical points of the polynomial differential system”, Planar nonlinear dynamical systems (Delft, 1995), Differential Equations Dynam. Systems, 5:3–4 (1997), 455–471 | MR | Zbl