Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_3_a4, author = {Driss Boularas and Angela Matei and A. \c{S}ub\u{a}}, title = {The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {44--56}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/} }
TY - JOUR AU - Driss Boularas AU - Angela Matei AU - A. Şubă TI - The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 44 EP - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/ LA - en ID - BASM_2008_3_a4 ER -
%0 Journal Article %A Driss Boularas %A Angela Matei %A A. Şubă %T The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 44-56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/ %G en %F BASM_2008_3_a4
Driss Boularas; Angela Matei; A. Şubă. The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 44-56. http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/
[1] Academic press, 1982 | MR
[2] Popa M.N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl
[3] Braicov A.V., Popa M.N., “The $GL(2,\mathbb{R})$-orbits of differential system with homogeneites second order”, The Internationals Conference “Differential and Integral Equations” (Odessa, September 12–14, 2000), 31
[4] Boularas D., Braicov A.V., Popa M.N., “Invariant conditions for dimensions of $GL(2,\mathbb{R})$-orbits for quadratic differential system”, Bul. Acad. Sci. Rep. Moldova, Math., 2000, no. 2(33), 31–38 | MR | Zbl
[5] Boularas D., Braicov A.V., Popa M.N., “The $GL(2,\mathbb{R})$-orbits of differential system with cubic homogeneites”, Bul. Acad. Sci. Rep. Moldova, Math., 2001, no. 1(35), 81–82 | MR | Zbl
[6] Naidenova E.V., Popa M.N., “On a classification of Orbits for Cubic Differential Systems”, Abstracts of “16th International Symposium on Nonlinear Acoustics”, section “Modern group analysis” (MOGRAN-9) (August 19–23, 2002, Moscow), 274
[7] Naidenova E.V., Popa M.N., “$GL(2,\mathbb{R})$-orbits for one cubic system”, Abstracts of “11th Conference on Applied and Industrial Mathematics” (May 29–31, 2003, Oradea, Romania), 57
[8] Staruş E.V., “Invariant conditions for the dimensions of the $GL(2,\mathbb{R})$-orbits for one differential cubic system”, Bul. Acad. Sci. Rep. Moldova, Math., 2003, no. 3(43), 58–70 | MR
[9] Staruş E.V., “The classification of the $GL(2,\mathbb{R})$-orbit's dimensions for the system $s(0,2)$ and a factorsystem $s(0,1,2)/GL(2,\mathbb{R})$”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 1(44), 120–123 | MR | Zbl
[10] Păşcanu A., Şubă A., “$GL(2,\mathbb{R})-$orbits of the polynomial systems of differential equation”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 3(46), 25–40 | MR
[11] Păşcanu A., “The $GL(2,\mathbb{R})$-orbits of the polynomial differential systems of degree four”, Bul. Acad. Sci. Rep. Moldova, Math., 2006, no. 3(52), 65–72 | MR