The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 44-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study the generic homogeneous polynomial differential system $\dot{x}_1= P_k(x_1, x_2)$, $\dot{x}_2=Q_k(x_1,x_2)$ under the action of the center-affine group of transformations of the phase space, $GL(2,\mathbb R)$. We show that if the dimension of the $GL(2,\mathbb R)$-orbits of this system is smaller than four, then $deg(GCD(P_k,Q_k))\geq k-1$.
@article{BASM_2008_3_a4,
     author = {Driss Boularas and Angela Matei and A. \c{S}ub\u{a}},
     title = {The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {44--56},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/}
}
TY  - JOUR
AU  - Driss Boularas
AU  - Angela Matei
AU  - A. Şubă
TI  - The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 44
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/
LA  - en
ID  - BASM_2008_3_a4
ER  - 
%0 Journal Article
%A Driss Boularas
%A Angela Matei
%A A. Şubă
%T The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 44-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/
%G en
%F BASM_2008_3_a4
Driss Boularas; Angela Matei; A. Şubă. The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 44-56. http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/

[1] Academic press, 1982 | MR

[2] Popa M.N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl

[3] Braicov A.V., Popa M.N., “The $GL(2,\mathbb{R})$-orbits of differential system with homogeneites second order”, The Internationals Conference “Differential and Integral Equations” (Odessa, September 12–14, 2000), 31

[4] Boularas D., Braicov A.V., Popa M.N., “Invariant conditions for dimensions of $GL(2,\mathbb{R})$-orbits for quadratic differential system”, Bul. Acad. Sci. Rep. Moldova, Math., 2000, no. 2(33), 31–38 | MR | Zbl

[5] Boularas D., Braicov A.V., Popa M.N., “The $GL(2,\mathbb{R})$-orbits of differential system with cubic homogeneites”, Bul. Acad. Sci. Rep. Moldova, Math., 2001, no. 1(35), 81–82 | MR | Zbl

[6] Naidenova E.V., Popa M.N., “On a classification of Orbits for Cubic Differential Systems”, Abstracts of “16th International Symposium on Nonlinear Acoustics”, section “Modern group analysis” (MOGRAN-9) (August 19–23, 2002, Moscow), 274

[7] Naidenova E.V., Popa M.N., “$GL(2,\mathbb{R})$-orbits for one cubic system”, Abstracts of “11th Conference on Applied and Industrial Mathematics” (May 29–31, 2003, Oradea, Romania), 57

[8] Staruş E.V., “Invariant conditions for the dimensions of the $GL(2,\mathbb{R})$-orbits for one differential cubic system”, Bul. Acad. Sci. Rep. Moldova, Math., 2003, no. 3(43), 58–70 | MR

[9] Staruş E.V., “The classification of the $GL(2,\mathbb{R})$-orbit's dimensions for the system $s(0,2)$ and a factorsystem $s(0,1,2)/GL(2,\mathbb{R})$”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 1(44), 120–123 | MR | Zbl

[10] Păşcanu A., Şubă A., “$GL(2,\mathbb{R})-$orbits of the polynomial systems of differential equation”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 3(46), 25–40 | MR

[11] Păşcanu A., “The $GL(2,\mathbb{R})$-orbits of the polynomial differential systems of degree four”, Bul. Acad. Sci. Rep. Moldova, Math., 2006, no. 3(52), 65–72 | MR