The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 44-56
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we study the generic homogeneous polynomial differential system $\dot{x}_1= P_k(x_1, x_2)$, $\dot{x}_2=Q_k(x_1,x_2)$ under the action of the center-affine group of transformations of the phase space, $GL(2,\mathbb R)$. We show that if the dimension of the $GL(2,\mathbb R)$-orbits of this system is smaller than four, then $deg(GCD(P_k,Q_k))\geq k-1$.
@article{BASM_2008_3_a4,
author = {Driss Boularas and Angela Matei and A. \c{S}ub\u{a}},
title = {The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {44--56},
publisher = {mathdoc},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/}
}
TY - JOUR AU - Driss Boularas AU - Angela Matei AU - A. Şubă TI - The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 44 EP - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/ LA - en ID - BASM_2008_3_a4 ER -
%0 Journal Article %A Driss Boularas %A Angela Matei %A A. Şubă %T The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 44-56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/ %G en %F BASM_2008_3_a4
Driss Boularas; Angela Matei; A. Şubă. The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 44-56. http://geodesic.mathdoc.fr/item/BASM_2008_3_a4/