Ore extensions over 2-primal Noetherian rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 34-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a ring and $\sigma$ an automorphism of $R$. We prove that if $R$ is a 2-primal Noetherian ring, then the skew polynomial ring $R[x;\sigma]$ is 2-primal Noetherian. Let now $\delta$ be a $\sigma$-derivation of $R$. We say that $R$ is a $\delta$-ring if $a\delta\in P(R)$ implies $a\in P(R)$, where $P(R)$ denotes the prime radical of $R$. We prove that $R[x;\sigma,\delta]$ is a 2-primal Noetherian ring if $R$ is a Noetherian $\mathbb{Q}$-algebra, $\sigma$ and $\delta$ are such that $R$ is a $\delta$-ring, $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a\in R$ and $\sigma(P)=P$, $P$ being any minimal prime ideal of $R$. We use this to prove that if $R$ is a Noetherian $\sigma(*)$-ring (i.e. $a\sigma(a)\in P(R)$ implies $a\in P(R)$, $\delta$ a $\sigma$-derivation of $R$ such that $R$ is a $\delta$-ring and $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a\in R$, then $R[x;\sigma,\delta]$ is a 2-primal Noetherian ring.
@article{BASM_2008_3_a3,
author = {V. K. Bhat},
title = {Ore extensions over 2-primal {Noetherian} rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {34--43},
publisher = {mathdoc},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a3/}
}
V. K. Bhat. Ore extensions over 2-primal Noetherian rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 34-43. http://geodesic.mathdoc.fr/item/BASM_2008_3_a3/