Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_2_a5, author = {Vladimir A. Emelichev and Andrey A. Platonov}, title = {Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the {Helder} metric}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {58--67}, publisher = {mathdoc}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/} }
TY - JOUR AU - Vladimir A. Emelichev AU - Andrey A. Platonov TI - Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 58 EP - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/ LA - en ID - BASM_2008_2_a5 ER -
%0 Journal Article %A Vladimir A. Emelichev %A Andrey A. Platonov %T Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 58-67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/ %G en %F BASM_2008_2_a5
Vladimir A. Emelichev; Andrey A. Platonov. Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 58-67. http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/
[1] Bukhtoyarov S.E., Emelichev V.A., “Stability of discrete vector problems with the parametric principle of optimality”, Cybernetics and Systems Analysis, 39:4 (2003), 604–614 | DOI | MR | Zbl
[2] Bukhtoyarov S.E., Emelichev V.A., “Quasistability of vector trajectory problem with the parametric optimality principle”, Izv. Vuzov, Mathematica, 2004, no. 1, 25–30 | MR | Zbl
[3] Emelichev V.A., Kuzmin K.G., “Measure of quasistability in $l_1$ metric vector combinatorial problem with parametric optimality principle”, Izv. Vuzov, Mathematica, 2005, no. 12, 3–10 (in Russian) | MR | Zbl
[4] Emelichev V.A., Kuzmin K.G., “About stability radius of effective solution vector problem of integer linear programming in Gelder metric”, Cybernetics and System Analysis, 2006, no. 4, 175–181 | Zbl
[5] Emelichev V.A., Platonov A.A., “About one discrete analog of Hausdorff semi-continuity of suitable mapping in a vector combinatorial problem with a parametric principle of optimality (“from Slater to lexicographic”)”, Revue d'Analyse Numerique et de Theorie de l'Approximation, Cluj-Napeca, Romania, 35:2 (2006) | MR
[6] Kolmogorov A.N., Fomin S.V., Elements of function theory and functional analysis, Nauka, Moscow, 1972 (in Russian)
[7] Bukhtoyarov S.E., Emelichev V.A., “Optimality principle (“from Pareto to Slator”) parametrization and stability of suitable mapping trajectorial problems”, Discrete analysis and operation research, 10:4 (2003), 3–18 (in Russian) | MR
[8] Bukhtoyarov S.E., Emelichev V.A., “Measure of stability for a finite cooperative game with a parametric optimality principle (“from Pareto to Nash”)”, Comput. Math. and Math. Phys., 46:7 (2006), 1193–1199 | DOI
[9] Bukhtoyarov S.E., Emelichev V.A., “About stability of a finite cooperative game with parametric conception of equilibrium (“from Pareto to Nash”)”, Rapporteur of the Belarusian NAN, 50:1 (2006), 9–11 (in Russian) | MR
[10] Emelichev V.A., Kuzmin K.G., “Finite cooperative games with a parametric concept of equilibrium under uncertainty conditions”, Journal of Computer and Systems Sciences International, 45:2 (2006), 276–281 | DOI | MR
[11] Bukhtoyarov S.E., Emelichev V.A., “On stability of an optimal situation in a finite cooperative game with a parametric concept of equilibrium (“from lexicographic optimality to Nash equilibrium”)”, Computer Science Journal of Moldova, 12:3 (2004), 371–380 | MR | Zbl
[12] Emelichev V.A., Podkopaev D.P., “On a quantitative measure of stability for a vector problem in integer programming”, Comput. Math. and Math. Phys., 38:11 (1998), 1727–1731 | MR | Zbl
[13] Emelichev V.A., Girlich E., Nikulin Yu.V., Podkopaev D.P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl
[14] Sergienco I.V., Kozeratskaya L.N., Lebedeva T.T., Investigation of stability and parametric analysis of discrete optimization problem, Naukova Dumka, Kiev, 1995 (in Russian)
[15] Sergienko I.V., Shilo V.P., Discrete optimization problems. Problems, decision methods, investigations, Naukova Dumka, Kiev, 2003 (in Russian)
[16] Smale S., “Global analysis and economics, V. Pareto, theory with constraints”, J. Math. Econom., 1:3 (1974), 213–221 | DOI | MR | Zbl