Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 58-67

Voir la notice de l'article provenant de la source Math-Net.Ru

A vector integer linear programming problem is considered, principle of optimality of which is defined by a partitioning of partial criteria into groups with Pareto preference relation within each group and the lexicographic preference relation between them. Quasistability of the problem is investigated. This type of stability is a discrete analog of Hausdorff lower semicontinuity of the many-valued mapping that defines the choice function. A formula of quasistability radius is derived for the case of metric $l_p$, $1\leq p\leq\infty$ defined in the space of parameters of the vector criterion. Similar formulae had been obtained before only for combinatorial (boolean) problems with various kinds of parametrization of the principles of optimality in the cases of $l_1$ and $l_{\infty}$ metrics [1–4], and for some game theory problems [5–7].
@article{BASM_2008_2_a5,
     author = {Vladimir A. Emelichev and Andrey A. Platonov},
     title = {Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the {Helder} metric},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {58--67},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/}
}
TY  - JOUR
AU  - Vladimir A. Emelichev
AU  - Andrey A. Platonov
TI  - Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 58
EP  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/
LA  - en
ID  - BASM_2008_2_a5
ER  - 
%0 Journal Article
%A Vladimir A. Emelichev
%A Andrey A. Platonov
%T Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 58-67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/
%G en
%F BASM_2008_2_a5
Vladimir A. Emelichev; Andrey A. Platonov. Measure of quasistability of a~vector integer linear programming problem with generalized principle of optimality in the Helder metric. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 58-67. http://geodesic.mathdoc.fr/item/BASM_2008_2_a5/