Symmetric random evolution in the space~$\mathbb R^6$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 114-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A closed-form expression for the transition density of a symmetric Markovian random evolution in the Euclidean space $\mathbb R^6$ is presented.
@article{BASM_2008_2_a11,
     author = {Alexander D. Kolesnik},
     title = {Symmetric random evolution in the space~$\mathbb R^6$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {114--117},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a11/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Symmetric random evolution in the space~$\mathbb R^6$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 114
EP  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_2_a11/
LA  - en
ID  - BASM_2008_2_a11
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Symmetric random evolution in the space~$\mathbb R^6$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 114-117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_2_a11/
%G en
%F BASM_2008_2_a11
Alexander D. Kolesnik. Symmetric random evolution in the space~$\mathbb R^6$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 114-117. http://geodesic.mathdoc.fr/item/BASM_2008_2_a11/

[1] Kolesnik A.D., “Random motions at finite speed in higher dimensions”, J. Stat. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl

[2] Kolesnik A.D., “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838–842 | DOI | MR | Zbl

[3] Kolesnik A.D., “Markov random evolutions in $\mathbb R^m$”, Proc. Intern. Conf. “Skorokhod Space: 50 Years On”, Part II (Kyiv, June 2007), 37–38

[4] Kolesnik A.D., “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl

[5] Kolesnik A.D., “Characteristic functions of Markovian random evolutions in $\mathbb R^m$”, Bull. Acad. Sci. Moldova, Ser. Math., 2006, no. 3(52), 117–120 | MR | Zbl

[6] Kolesnik A.D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl

[7] Masoliver J., Porrá J.M., Weiss G.H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[8] Orsingher E., De Gregorio A., “Random flights in higher spaces”, J. Theoret. Probab., 20 (2007), 769–806 | DOI | MR | Zbl

[9] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR

[10] Stadje W., “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl

[11] Tolubinsky E.V., The Theory of Transfer Processes, Naukova Dumka, Kiev, 1969