The transvectants and the integrals for Darboux systems of differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 4-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the algebraic theory of invariants of differential equations to integrate the polynomial differential systems $dx/dt=P1_(x,y)+xC(x,y)$, $dy/dt=Q1_(x,y)+yC(x,y)$, where real homogeneous polynomials $P_1$ and $Q_1$ have the first degree and $C(x,y)$ is a real homogeneous polynomial of degree $r\ge 1$. In generic cases the invariant algebraic curves and the first integrals for these systems are constructed. The constructed invariant algebraic curves are expressed by comitants and invariants of investigated systems.
@article{BASM_2008_1_a1,
     author = {V. Baltag and I. Calin},
     title = {The transvectants and the integrals for {Darboux} systems of differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {4--18},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/}
}
TY  - JOUR
AU  - V. Baltag
AU  - I. Calin
TI  - The transvectants and the integrals for Darboux systems of differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 4
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/
LA  - en
ID  - BASM_2008_1_a1
ER  - 
%0 Journal Article
%A V. Baltag
%A I. Calin
%T The transvectants and the integrals for Darboux systems of differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 4-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/
%G en
%F BASM_2008_1_a1
V. Baltag; I. Calin. The transvectants and the integrals for Darboux systems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 4-18. http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/

[1] Dumortier F., Llibre J., Artes J., Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, Heidelberg, 2006 | MR | Zbl

[2] Lucashevich N. A., “The integral curves of Darboux equations”, Diff. Equations, 2:5 (1966), 628–633 (in Russian) | MR

[3] Dedok N. N., “On the singular points of differential equation Darboux”, Diff. Equations, 2:10 (1972), 1880–1881 (in Russian) | MR

[4] Amelkin V. V., Lucashevich N. A, Sadovski A. P., Nonlinear variation in systems of the second order, Minsk, 1982 (in Russian)

[5] Gorbuzov V. N., Samodurov A. A., Darboux equation and its analogues: Optional course manual, Grodno, 1985 (in Russian)

[6] Gine' J., Llibre J., “Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities”, J. Differential Equations, 197 (2004), 147–161 | DOI | MR | Zbl

[7] Chavarriga J., Gine' J., Grau M., “Integrable systems via polynomial inverse integrating factors”, Bull. Sci. Math., 126 (2002), 315–331 | DOI | MR | Zbl

[8] Chavarriga J., Giacomini H., Gine' J., Llibre J., “On the Integrability of Two-Dimensional Flows”, J. Differential Equations, 157 (1999), 163–182 | DOI | MR | Zbl

[9] Chavarriga J., Gine' J., “Polynomial first integrals of systems in the plane with center type linear part”, Nonlinear Anal., 31 (1998), 521–535 | DOI | MR | Zbl

[10] Chavarriga J., Gine' J., “Integrability of cubic systems with degenerate infinity”, Differential Equations Dynam. Systems, 6:4 (1998), 425–438 | MR | Zbl

[11] Gorbuzov V. N., Tyshchenko V. Yu., “Particular integrals of systems of ordinary differential equations”, Mat. Sb., 183:3 (1992), 76–94 (in Russian) | MR | Zbl

[12] Vulpe N. I., Costas S. I., “The center-affine invariant conditions for existence of the limit cycle for one Darboux system”, Dinamicheskie Sistemy i Kraevye Zadachi, Matem. Issled., 92, 1987, 147–161 (in Russian) | MR

[13] Vulpe N. I., Costas S. I., The center-affine invariant conditions of topological distinctions of the Darboux differential systems with cubic nonlinearities, Preprint, Chisinau, 1989 (in Russian)

[14] Diaconescu O. V., Popa M. N., “Lie algebras of operators and invariant $GL(2,\mathbb R)$–integrals for Darboux type differential systems”, Buletinul Academiei de Ştiinţe a RM. Matematica, 2006, no. 3(52), 3–16 | MR | Zbl

[15] Artes J., Llibre J., Vulpe N., “Quadratic systems with rational first integral of degree 2: a complete classification in the coefficient space $\mathbb R^{12}$”, Rendiconti Del Circolo Matematico di Palermo, Ser. II, LVI, 147–161

[16] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl

[17] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of diferential equations”, Buletinul Academiei de Ştiinţe a RM, Matematica, 2003, no. 2(42), 69–86 | MR | Zbl

[18] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl

[19] Driss Boularas, Calin Iu., Timochouk L., Vulpe N., $T$-comitants of quadratic systems: A study via the translation invariants, Report 96-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996