Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_1_a1, author = {V. Baltag and I. Calin}, title = {The transvectants and the integrals for {Darboux} systems of differential equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {4--18}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/} }
TY - JOUR AU - V. Baltag AU - I. Calin TI - The transvectants and the integrals for Darboux systems of differential equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 4 EP - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/ LA - en ID - BASM_2008_1_a1 ER -
%0 Journal Article %A V. Baltag %A I. Calin %T The transvectants and the integrals for Darboux systems of differential equations %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 4-18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/ %G en %F BASM_2008_1_a1
V. Baltag; I. Calin. The transvectants and the integrals for Darboux systems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 4-18. http://geodesic.mathdoc.fr/item/BASM_2008_1_a1/
[1] Dumortier F., Llibre J., Artes J., Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin, Heidelberg, 2006 | MR | Zbl
[2] Lucashevich N. A., “The integral curves of Darboux equations”, Diff. Equations, 2:5 (1966), 628–633 (in Russian) | MR
[3] Dedok N. N., “On the singular points of differential equation Darboux”, Diff. Equations, 2:10 (1972), 1880–1881 (in Russian) | MR
[4] Amelkin V. V., Lucashevich N. A, Sadovski A. P., Nonlinear variation in systems of the second order, Minsk, 1982 (in Russian)
[5] Gorbuzov V. N., Samodurov A. A., Darboux equation and its analogues: Optional course manual, Grodno, 1985 (in Russian)
[6] Gine' J., Llibre J., “Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities”, J. Differential Equations, 197 (2004), 147–161 | DOI | MR | Zbl
[7] Chavarriga J., Gine' J., Grau M., “Integrable systems via polynomial inverse integrating factors”, Bull. Sci. Math., 126 (2002), 315–331 | DOI | MR | Zbl
[8] Chavarriga J., Giacomini H., Gine' J., Llibre J., “On the Integrability of Two-Dimensional Flows”, J. Differential Equations, 157 (1999), 163–182 | DOI | MR | Zbl
[9] Chavarriga J., Gine' J., “Polynomial first integrals of systems in the plane with center type linear part”, Nonlinear Anal., 31 (1998), 521–535 | DOI | MR | Zbl
[10] Chavarriga J., Gine' J., “Integrability of cubic systems with degenerate infinity”, Differential Equations Dynam. Systems, 6:4 (1998), 425–438 | MR | Zbl
[11] Gorbuzov V. N., Tyshchenko V. Yu., “Particular integrals of systems of ordinary differential equations”, Mat. Sb., 183:3 (1992), 76–94 (in Russian) | MR | Zbl
[12] Vulpe N. I., Costas S. I., “The center-affine invariant conditions for existence of the limit cycle for one Darboux system”, Dinamicheskie Sistemy i Kraevye Zadachi, Matem. Issled., 92, 1987, 147–161 (in Russian) | MR
[13] Vulpe N. I., Costas S. I., The center-affine invariant conditions of topological distinctions of the Darboux differential systems with cubic nonlinearities, Preprint, Chisinau, 1989 (in Russian)
[14] Diaconescu O. V., Popa M. N., “Lie algebras of operators and invariant $GL(2,\mathbb R)$–integrals for Darboux type differential systems”, Buletinul Academiei de Ştiinţe a RM. Matematica, 2006, no. 3(52), 3–16 | MR | Zbl
[15] Artes J., Llibre J., Vulpe N., “Quadratic systems with rational first integral of degree 2: a complete classification in the coefficient space $\mathbb R^{12}$”, Rendiconti Del Circolo Matematico di Palermo, Ser. II, LVI, 147–161
[16] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl
[17] Calin Iu., “On rational bases of $GL(2,\mathbb R)$-comitants of planar polynomial systems of diferential equations”, Buletinul Academiei de Ştiinţe a RM, Matematica, 2003, no. 2(42), 69–86 | MR | Zbl
[18] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl
[19] Driss Boularas, Calin Iu., Timochouk L., Vulpe N., $T$-comitants of quadratic systems: A study via the translation invariants, Report 96-90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996