Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2007_3_a8, author = {Cristina Nartea}, title = {Computation of inertial manifolds in biological models. {FitzHugh--Nagumo} model}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {102--111}, publisher = {mathdoc}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a8/} }
TY - JOUR AU - Cristina Nartea TI - Computation of inertial manifolds in biological models. FitzHugh--Nagumo model JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 102 EP - 111 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2007_3_a8/ LA - en ID - BASM_2007_3_a8 ER -
Cristina Nartea. Computation of inertial manifolds in biological models. FitzHugh--Nagumo model. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 102-111. http://geodesic.mathdoc.fr/item/BASM_2007_3_a8/
[1] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1 (1961), 445–446 | DOI
[2] Georgescu A., Rocoreanu C., Giurgieanu N., “Global bifurcations in FitzHugh-Nagumo model”, Trends in Mathematics: Bifurcations, Symmetry and Patterns, Birkhäuser Verlag, Basel, Switzerland, 2003, 197–202 | MR | Zbl
[3] Rocoreanu C., Georgescu A., Giurgieanu N., The FitzHugh-Nagumo model. Bifurcation and Dynamics, Kluwer, Dordrecht, 2000 | MR
[4] Jolly M. S., Rosa R., “Computation of non-smooth local centre manifolds”, IMA J. of Numerical Analysis, 25 (2005), 698–725 | DOI | MR | Zbl
[5] Jolly M. S., Rosa R., Temam R., “Accurate computations on inertial manifold”, SIAM J. Sci. Comput., 22:6 (2000), 2216–2238 | DOI | MR
[6] Rosa R., “Approximate inertial manifolds of exponential order”, Discrete and Continuous Dynamical Systems, 1 (1995), 421–448 | DOI | MR | Zbl
[7] Rosa R., Temam R., “Inertial manifolds and normal hyperbolicity”, ACTA Applicandae Mathematicae, 45 (1996), 1–50 | DOI | MR | Zbl
[8] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, 68, Springer, Berlin, 1997 | MR | Zbl
[9] Tu P., Dynamical systems. An introduction with applications in economics and biology, Springer, Berlin, 1994 | MR
[10] www.scilab.org/