Parametrical Approach for Bilinear Programming and its Application for solving Integer and Combinatorial Optimization Problems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A parametrical approach for bilinear programming is proposed and new algorithms on the basis of such approach for solving linear boolean and resource allocation problems are developed. Computational complexity of the proposed algorithms is discussed.
@article{BASM_2007_3_a7,
     author = {Dmitrii Lozovanu},
     title = {Parametrical {Approach} for {Bilinear} {Programming} and its {Application} for solving {Integer} and {Combinatorial} {Optimization} {Problems}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {91--101},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a7/}
}
TY  - JOUR
AU  - Dmitrii Lozovanu
TI  - Parametrical Approach for Bilinear Programming and its Application for solving Integer and Combinatorial Optimization Problems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 91
EP  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_3_a7/
LA  - en
ID  - BASM_2007_3_a7
ER  - 
%0 Journal Article
%A Dmitrii Lozovanu
%T Parametrical Approach for Bilinear Programming and its Application for solving Integer and Combinatorial Optimization Problems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 91-101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_3_a7/
%G en
%F BASM_2007_3_a7
Dmitrii Lozovanu. Parametrical Approach for Bilinear Programming and its Application for solving Integer and Combinatorial Optimization Problems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 91-101. http://geodesic.mathdoc.fr/item/BASM_2007_3_a7/

[1] Altman M., “Bilinear Programming”, Bul. Acad. Polan. Sci., Ser. Sci. Math. Astron. et Phis., 16(9) (1968), 741–746 | MR | Zbl

[2] Chernicov S. N., Linear Inequalities, Nauka, Moscow, 1968 (in Russian) | MR

[3] Farkas J., “Uber die Theorie der einfachen Ungleichungen”, J. reine and angew. Math., 124 (1901), 1–24

[4] Garey M., Johnson D., Computers and Intractability: A Guide to the Theory of $NP$-Completeness, Freeman, 1979 | MR | Zbl

[5] Karmanov V., Mathematical Programming, Nauka, Moscow, 1990 (in Russian) | MR

[6] Karp R., “Reducibility among combinatorial problems”, Complexity of Computer Computations, eds. Miler R., Thatcher J., 1972, 83–103 | MR

[7] Khachian L. G., “Polynomial time algorithm in linear programming”, USSR, Computational Mathematics and Mathematical Physics, 20 (1980), 51–58 | DOI

[8] Khachian L. G., “On exact solution of the system of linear inequalities and linear programming problem”, USSR, Computational Mathematics and Mathematical Physics, 22 (1982), 999–1002 | MR

[9] Lozovanu D., “Duality Principle for Systems of Linear Inequalities with a Right-Hand Member that Depends on Parameters”, Izv. AN SSSR, Ser. Techn. Cyb., 6 (1987), 3–13 (in Russian)

[10] Lozovanu D., Extremal-Combinatorial Problems and Algorithms for their Solving, Stiintsa, Chisinau, 1991 (in Russian)

[11] Lozovanu D., “Parametrical approach for studying and solving bilinear programming problem”, Proceedings of the International Workshop on Global Optimization (San Jose, Almeria, Spain, September 18–22th, 2005), 165–170