Radicals of Morita rings revisited
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 55-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The radical of a Morita ring has been determined explicitly in terms of the radicals of the underlying base rings for radical classes which satisfy certain conditions. Here we again look at the radicals of Morita rings. But, in order to describe the radical of such a ring in terms of the underlying base rings, we rather exploit certain structural properties of Morita rings and weaken the requirements on the radical class.
@article{BASM_2007_2_a5,
     author = {Stefan Veldsman},
     title = {Radicals of {Morita} rings revisited},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {55--68},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a5/}
}
TY  - JOUR
AU  - Stefan Veldsman
TI  - Radicals of Morita rings revisited
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 55
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_2_a5/
LA  - en
ID  - BASM_2007_2_a5
ER  - 
%0 Journal Article
%A Stefan Veldsman
%T Radicals of Morita rings revisited
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 55-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_2_a5/
%G en
%F BASM_2007_2_a5
Stefan Veldsman. Radicals of Morita rings revisited. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 55-68. http://geodesic.mathdoc.fr/item/BASM_2007_2_a5/

[1] Amitsur S. A., “A general radical theory of rings, II”, Amer. J. Math., 76 (1954), 100–125 | DOI | MR | Zbl

[2] Gardner B. J., Wiegandt R., Radical theory of Rings, Marcel Dekker Inc., USA, 2004 | MR | Zbl

[3] Jaegermann M., “Normal radicals”, Fund. Math., 95 (1977), 147–155 | MR | Zbl

[4] Propes R. E., “The radical equation $P(A_n)=(P(A))_n$”, Proc. Edinburgh Math. Soc., 19 (1974/75), 257–259 | DOI | MR

[5] Sands A. D., “Radicals and Morita contexts”, J. Algebra, 24 (1973), 335–345 | DOI | MR | Zbl

[6] Sands A. D., “Radicals of structural matrix rings”, Quaest. Math., 13 (1990), 77–81 | MR | Zbl

[7] Snider R. L., “Complemented hereditary radicals”, Bull. Austral. Math. Soc., 4 (1971), 307–320 | DOI | MR | Zbl

[8] Van Wyk L., “Special radicals in structural matrix rings”, Comm. Alg., 16 (1988), 421–435 | DOI | MR | Zbl

[9] Veldsman S., “On the radicals of structural matrix rings”, Monatshefte Math., 122 (1996), 227–238 | DOI | MR | Zbl