A~new method for computing the number of $n$-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 57-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the isotopy classes of quasigroups for computing the numbers of finite $n$-quasigroups $(n= 1,2,3,\dots)$. The computation is based on the property that every two isotopic $n$-quasigroups are substructures of the same number of $n+1$-quasigroups. This is a new method for computing the number of $n$-quasigroups and in an enough easy way we could compute the numbers of ternary quasigroups of orders up to and including 5 and of quaternary quasigroups of orders up to and including 4.
@article{BASM_2006_3_a5,
     author = {S. Markovski and V. Dimitrova and A. Mileva},
     title = {A~new method for computing the number of $n$-quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--64},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/}
}
TY  - JOUR
AU  - S. Markovski
AU  - V. Dimitrova
AU  - A. Mileva
TI  - A~new method for computing the number of $n$-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 57
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/
LA  - en
ID  - BASM_2006_3_a5
ER  - 
%0 Journal Article
%A S. Markovski
%A V. Dimitrova
%A A. Mileva
%T A~new method for computing the number of $n$-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 57-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/
%G en
%F BASM_2006_3_a5
S. Markovski; V. Dimitrova; A. Mileva. A~new method for computing the number of $n$-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 57-64. http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/