A~new method for computing the number of $n$-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the isotopy classes of quasigroups for computing the numbers of finite $n$-quasigroups $(n= 1,2,3,\dots)$. The computation is based on the property that every two isotopic $n$-quasigroups are substructures of the same number of $n+1$-quasigroups. This is a new method for computing the number of $n$-quasigroups and in an enough easy way we could compute the numbers of ternary quasigroups of orders up to and including 5 and of quaternary quasigroups of orders up to and including 4.
@article{BASM_2006_3_a5,
     author = {S. Markovski and V. Dimitrova and A. Mileva},
     title = {A~new method for computing the number of $n$-quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--64},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/}
}
TY  - JOUR
AU  - S. Markovski
AU  - V. Dimitrova
AU  - A. Mileva
TI  - A~new method for computing the number of $n$-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 57
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/
LA  - en
ID  - BASM_2006_3_a5
ER  - 
%0 Journal Article
%A S. Markovski
%A V. Dimitrova
%A A. Mileva
%T A~new method for computing the number of $n$-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 57-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/
%G en
%F BASM_2006_3_a5
S. Markovski; V. Dimitrova; A. Mileva. A~new method for computing the number of $n$-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 57-64. http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/

[1] Belousov V. D., $n$-ary Quasigroups, Shtiinca, Kishinev, 1972 (in Russian) | MR

[2] Dénes J., Keedwell A. D., Latin Squares and their Applications, English Univer. Press Ltd., 1974 | MR

[3] Dimitrova V., Quasigroup Transformations and Their Applications, MSc thesis, Skopje, 2005

[4] McKay B. D., Wanless I. M., “On the number of Latin squares”, Ann. Combin., 9 (2005), 335–344 | DOI | MR | Zbl

[5] Mullen G. L., Weber R. E., “Latin cubes of order $\leq 5$”, Discrete Math., 32:3 (1980), 291–297 | DOI | MR | Zbl

[6] Potapov V. N., Krotov D. S., “Asymptotics for the number of $n$-quasigroups of order 4”, Siberian Math. J., 2006, no. 47(4), 720–731 | DOI | MR | Zbl

[7] http://www.research.att.com/\allowbreakñjas/sequences/?q=A099321&sort=0&fmt=0&language=english&go=Search