A new method for computing the number of $n$-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 57-64
Cet article a éte moissonné depuis la source Math-Net.Ru
We use the isotopy classes of quasigroups for computing the numbers of finite $n$-quasigroups $(n= 1,2,3,\dots)$. The computation is based on the property that every two isotopic $n$-quasigroups are substructures of the same number of $n+1$-quasigroups. This is a new method for computing the number of $n$-quasigroups and in an enough easy way we could compute the numbers of ternary quasigroups of orders up to and including 5 and of quaternary quasigroups of orders up to and including 4.
@article{BASM_2006_3_a5,
author = {S. Markovski and V. Dimitrova and A. Mileva},
title = {A~new method for computing the number of $n$-quasigroups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {57--64},
year = {2006},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/}
}
TY - JOUR AU - S. Markovski AU - V. Dimitrova AU - A. Mileva TI - A new method for computing the number of $n$-quasigroups JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2006 SP - 57 EP - 64 IS - 3 UR - http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/ LA - en ID - BASM_2006_3_a5 ER -
S. Markovski; V. Dimitrova; A. Mileva. A new method for computing the number of $n$-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 57-64. http://geodesic.mathdoc.fr/item/BASM_2006_3_a5/
[1] Belousov V. D., $n$-ary Quasigroups, Shtiinca, Kishinev, 1972 (in Russian) | MR
[2] Dénes J., Keedwell A. D., Latin Squares and their Applications, English Univer. Press Ltd., 1974 | MR
[3] Dimitrova V., Quasigroup Transformations and Their Applications, MSc thesis, Skopje, 2005
[4] McKay B. D., Wanless I. M., “On the number of Latin squares”, Ann. Combin., 9 (2005), 335–344 | DOI | MR | Zbl
[5] Mullen G. L., Weber R. E., “Latin cubes of order $\leq 5$”, Discrete Math., 32:3 (1980), 291–297 | DOI | MR | Zbl
[6] Potapov V. N., Krotov D. S., “Asymptotics for the number of $n$-quasigroups of order 4”, Siberian Math. J., 2006, no. 47(4), 720–731 | DOI | MR | Zbl