The numerical analysis of the tense condition of a~solid body with the asymmetrical tensor of strains
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an approach permitting to make calculation of non-steady fields of elastic bodies with an asymmetrical stress tensor is proposed. On the basis of integral equations the explicit difference network, founded on S. K. Godunov method named “disintegrations of a gap” is constructed. The versions are considered, when the difference network approximates an initial set of equations with the first and second order of accuracy.
@article{BASM_2006_2_a3,
     author = {Vasile Ceban and Ion Naval},
     title = {The numerical analysis of the tense condition of a~solid body with the asymmetrical tensor of strains},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {35--44},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_2_a3/}
}
TY  - JOUR
AU  - Vasile Ceban
AU  - Ion Naval
TI  - The numerical analysis of the tense condition of a~solid body with the asymmetrical tensor of strains
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 35
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_2_a3/
LA  - en
ID  - BASM_2006_2_a3
ER  - 
%0 Journal Article
%A Vasile Ceban
%A Ion Naval
%T The numerical analysis of the tense condition of a~solid body with the asymmetrical tensor of strains
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 35-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_2_a3/
%G en
%F BASM_2006_2_a3
Vasile Ceban; Ion Naval. The numerical analysis of the tense condition of a~solid body with the asymmetrical tensor of strains. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2006), pp. 35-44. http://geodesic.mathdoc.fr/item/BASM_2006_2_a3/

[1] Kuvshinschy E. V., Aiaro E. L., “Continuum theory of assymetric tension”, SBPH, 5:9 (1963) (in Russian)

[2] Palimov V. A., “The basic equations of assymetric tension”, AMM, 28:3 (1964) (in Russian)

[3] Cosserat E., Theorie des corps deformables, Paris, 1909 | Zbl

[4] Toupin R. A., “Theories of elasticity with couple-stress”, Arch. R. Mech., 1914, no. 17(85) | MR

[5] Aiaro E. L., Kuvshinschy E. V., “The basic equations of the elasticity theory for the medium with rotated interaction of particles”, SBF, 2:7 (1960) (in Russian)

[6] Savin G. I., Basic flate problems of the moment tensions theory, Ed. KSU, Kiev, 1965 (in Russian)

[7] Koiter W., Collections of translations. Mechanics, 1965, no. 3 (in Russian)

[8] Mindlin D. D., Tirsten G. F., “Moment tentions effects in the linear theory of tensions”, Collections of translations. Mechanics, 1964, no. 4

[9] Godunov S. K., Zabrodin A. V. and other, Numerical solution of the multidimention problems of the gas dynamics, Ed. Science, Moskva, 1976 (in Russian)

[10] Franc F., Mizes R., Integral and differential equations of the mathematical physics, GTTI, 1936, ch. 12.

[11] M. N. Abuzarov, V. G. Bagenov, A. V. Cochetcov, “About new effective approach to the precise effectivness of the Godunov scheem. Applied problems of the regidity and plasticity”, Union Interuniversity collection, 1987, 44–50 (in Russian)