Measure of stability and quasistability to a~vector integer programming problem in the~$l_1$ metric
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a multicriterion vector integer programming problem with Pareto principle of optimality. Quantitative characteristics of two types of stability under perturbations of the vector criterion parameters with $l_1$ metric are obtained.
@article{BASM_2006_1_a4,
     author = {Vladimir A. Emelichev and Olga V. Karelkina and Kirill G. Kuzmin},
     title = {Measure of stability and quasistability to a~vector integer programming problem in the~$l_1$ metric},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {39--50},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_1_a4/}
}
TY  - JOUR
AU  - Vladimir A. Emelichev
AU  - Olga V. Karelkina
AU  - Kirill G. Kuzmin
TI  - Measure of stability and quasistability to a~vector integer programming problem in the~$l_1$ metric
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 39
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_1_a4/
LA  - en
ID  - BASM_2006_1_a4
ER  - 
%0 Journal Article
%A Vladimir A. Emelichev
%A Olga V. Karelkina
%A Kirill G. Kuzmin
%T Measure of stability and quasistability to a~vector integer programming problem in the~$l_1$ metric
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 39-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_1_a4/
%G en
%F BASM_2006_1_a4
Vladimir A. Emelichev; Olga V. Karelkina; Kirill G. Kuzmin. Measure of stability and quasistability to a~vector integer programming problem in the~$l_1$ metric. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2006), pp. 39-50. http://geodesic.mathdoc.fr/item/BASM_2006_1_a4/

[1] Ehrgott M., Gandibleux X. A., “Survey and annotated bibliography of multiobjective combinatorial optimization”, OR Spectrum, 22:4 (2000), 425–460 | DOI | MR | Zbl

[2] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, ed. D. L. Woodruff, Kluwer Acad. Publ., Boston, 1998, 97–148, http://ores.bus.okstate.edu/itorms | MR

[3] Sergienco I. V., Kozeratskaya L. N., Lebedeva T. T., Investigation of stability and parametric analysis of discrete optimization problem, Naukova dumka, Kiev, 1995 (in Russian)

[4] Sergienco I. V., Shilo V. P., Discrete optimization problems. Problems, methods of solutions, investigations, Naukova dumka, Kiev, 2003 (in Russian)

[5] Sotskov Yu. N., Sotskov N. Yu., Scheduling theory. The systems with indefinite numerical parameters, National Academy of Sciences of Belarus, Minsk, 2004 (in Russian)

[6] Sotskov Yu. N., Leontev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Math. Appl., 58:2 (1995), 169–190 | DOI | MR | Zbl

[7] Sotskov Yu. N., Tanaev V. S., Werner F., “Stability radius of an optimal schedule: a survey and recent developments”, Industrial applications of combinatorial optimization, Kluwer Acad. Publ., Dordrecht, 1998, 72–108 | MR | Zbl

[8] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization problems”, Operations Research Letters, 23:1 (1998), 1–7 | DOI | MR | Zbl

[9] Libura M., Van-der-Poort E. S., Sierksma G., Van-der-Veen J. A. A., “Stability aspects of the traveling salesman problem based on $k$-best solutions”, Discrete Appl. Math., 87 (1998), 159–185 | DOI | MR | Zbl

[10] Van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0–1 programs”, Discrete Appl. Math., 91 (1999), 251–263 | DOI | MR | Zbl

[11] Emelichev V. A., Podkopaev D. P., “On a quantitative mesure of stability for a vector problem in integer programming”, Comput. Math. and Math. Phys., 38:11 (1998), 1727–1731 | MR | Zbl

[12] Emelichev V. A., Nikulin Yu. V., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR | Zbl

[13] Emelichev V. A., Podkopaev D. P., “Stability and Regularization of Vector Problems of Integer Linear Programming”, Discrete analysis and investigation of operations, 8:1 (2001), 47–69 (in Russian) | MR | Zbl

[14] Emelichev V. A., Pokhilka V. G., “On strong quasistability of a vector problem of integer linear programming”, Computer Science Journal of Moldova, 9:1 (2001), 71–85 | MR | Zbl

[15] Emelichev V. A., Girlich E., Nikulin Yu. V., Podkopaev D. P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[16] Emelichev V. A., Krichko V. N., Nikulin Yu. V., “The stability radius of an efficient solution in minimax Boolean programming problem”, Control and Cybernetics, 33:1 (2004), 127–132 | MR | Zbl

[17] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Stability in the combinatorial vector optimization problems”, Automatic and Remote Control, 65:2 (2004), 227–240 | DOI | MR | Zbl

[18] Podinovsky V. V., Nogin V. D., Pareto optimal solutions in multicriteria problems, Nauka, Moscow, 1982 (in Russian)

[19] Smale S., “Global analysis and economics. V: Pareto theory with constraints”, J. Math. Econom., 1:3 (1974), 213–221 | DOI | MR | Zbl

[20] Tanino T., Sawaragi Y., “Stability of nondominated solutions in multicriteria decision-making”, Journal of Optimization Theory and Applications, 30:2 (1980), 229–253 | DOI | MR | Zbl

[21] Kozeratskaya L. N., Lebedeva T. T., Sergienco T. I., “Integer programming problems: parametric analysis and stability investigation”, DAN SSSR, 307:3 (1989), 527–529 (in Russian)

[22] Emelichev V. A., Kuzmin K. G., “Stability of an efficient solution of the vector combinatorial problem in $l_1$ metric”, Dokl. National Academy of Sciences of Belarus, 47:5 (2003), 25–28 (in Russian) | MR