Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2005_3_a12, author = {A. Van\v{z}urov\'a}, title = {Cores of {Bol} loops and symmetric groupoids}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {153--164}, publisher = {mathdoc}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a12/} }
A. Vanžurová. Cores of Bol loops and symmetric groupoids. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 153-164. http://geodesic.mathdoc.fr/item/BASM_2005_3_a12/
[1] Arworn Sr., Denecke K., “Hyperidentities and hypersubstitutions in the variety of symmetric, idempotent, entropic groupoids”, Dem. Math., XXXII:4 (1999), 677–686 | MR
[2] Belousov V. D., Foundations of the theory of guasigroups and loops, Nauka, Moscow, 1967 | MR
[3] Bruck R. H., A Survey of Binary Systems, Springer, Berlin, 1958 | MR | Zbl
[4] Burn R. P., “Finite Bol loops”, Math. Proc. Cambridge Philos. Soc., 84 (1978), 377–385 | DOI | MR | Zbl
[5] Denecke K., Wismath Sh. L., Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC, Boca Raton–London–New York–Washington D. C., 2002 | MR | Zbl
[6] Grätzer G., Universal algebra, Van Nostrand Co., Princeton, New Yersey, 1968 | MR | Zbl
[7] Ihringer Th., Allgemeine Algebra, Teubner, Stuttgart, 1988 | MR | Zbl
[8] Jeřábek E., Kepka T., Stanovský D., Non-idempotent left symmetric left distributive groupoids, Preprint | Zbl
[9] Joyce D., “Aclassifying invariant of knots, the knot quandle”, Jour. of Pure and Appl. Alg., 23 (1982), 37–65 | DOI | MR | Zbl
[10] Kinyon M. K., “Global left loop structures on spheres”, Comment. Math. Univ. Carolinae, 41:2 (2000), 325–346 | MR | Zbl
[11] Lindner C. C., Mendelsohn N. S., “Constructions of $n$-cyclic quasigroups and applications”, Aequat. Math., 14 (1976), 111–121 | DOI | MR | Zbl
[12] Loos O., Symmetric Spaces, J. Benjamin, New York, 1969 | Zbl
[13] Nagy P. T., Strambach K., “Loops, their cores and symmetric spaces”, Israel Jour. of Math., 105 (1998), 285–322 | DOI | MR | Zbl
[14] Nagy P. T., Strambach K., Loops in Group Theory and Lie Theory, De Gruyter, Berlin–New York, 2002 | MR | Zbl
[15] Nobusawa N., “On symmetric structures of a finite set”, Osaka J. Math., 11 (1974), 569–575 | MR | Zbl
[16] Nobusawa N., “Simple symmetric sets and simple groups”, Osaka J. Math., 14 (1977), 411–415 | MR | Zbl
[17] Pflugfelder H. O., Quasigroups and Loops, Introduction, Heldermann Verlag, Berlin, 1990 | MR
[18] Pierce R. S., “Symmetric Groupoids”, Osaka J. Math., 15 (1978), 51–76 | MR | Zbl
[19] Pierce R. S., “Symmetric Groupoids, II”, Osaka J. Math., 16 (1979), 317–348 | MR | Zbl
[20] Romanowska A., Smith J. D. H., Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity, Heldermann Verlag, Berlin, 1985 | MR | Zbl
[21] Roszkowska B., “The lattice of varieties of symmetric idempotent entropic groupoids”, Demonstratio Math., XX:1–2 (1987), 259–275 | MR
[22] Roszkowska B., “On some varieties of symmetric idempotent entropic groupoids”, Universal and Applied Algebra, eds. K. Hałkowska, B. Stawski, World Scientific, 1989, 254–274 | MR
[23] Roszkowska-Lech B., “A representation of symmetric idempotent and entropic groupoids”, Demonstratio Math., XXXII:2 (1999), 247–262 | MR
[24] Roszkowska-Lech B., “Subdirectly irreducible symmetric idempotent and entropic groupoids”, Demonstratio Math., XXXII:3 (1999), 469–484 | MR
[25] Smith J. D. H., “Modes and modals”, Discussiones Math., Algebra and Stochastic Methods, 19 (1999), 9–40 | MR | Zbl
[26] Stanovský D., Left distributive groupoids, Diploma Thesis, Charles Univ., Prague
[27] Stanovský D., Left symmetric left distributive operations on a group, Preprint | MR
[28] Takasaki M., “Abstractions of symmetric functions”, Tôhoku Math. J., 49 (1943), 147–207 | MR
[29] Vanžurová A., “Normal form hypersubstitutions with respect to the variety of left symmetric left distributive idempotent groupoids”, Contributions in General Algebra, 14 (2004), 173–187 | Zbl