Cores of Bol loops and symmetric groupoids
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 153-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a core was originally invented by R. H. Bruck for Moufang loops, [3], and the construction was generalized by V. D. Belousov for quasigroups in [2] (we will discuss 1-cores here). It is well known that cores of left Bol loops, particularly cores of Moufang loops, or groups, are left distributive, left symmetric, and idempotent, [2]. Among others, our aim is to clarify the relationship between cores and the variety of left symmetric left distributive idempotet groupoids, $\underline{SID}$, or its medial subvariety, $\underline{SIE}$, respectively. The class of cores of left Bol loops is not closed under subalgebras, therefore is no variety (even no quasivariety), and we can ask what variety is generated by cores: the class of left Bol loop cores (even the class of group cores) generates the variety of left distributive left symmetric idempotent groupoids, while cores of abelian groups generate the variety of idempotent left symmetric medial groupoids. It seems that the variety $\underline{SID}$ of left distributive left symmetric idempotent groupoids (“symmetric groupoids”) aroused attention especially in connection with symmetric spaces in 70' and 80' [15, 16, 18, 19] and the interest continues. Recently, it was treated in [8, 26, 27], and also in [29], from the view-point of hypersubstitutions. The right symmetric idempotent and medial case was investigated e.g. in [1, 21–24].
@article{BASM_2005_3_a12,
     author = {A. Van\v{z}urov\'a},
     title = {Cores of {Bol} loops and symmetric groupoids},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {153--164},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_3_a12/}
}
TY  - JOUR
AU  - A. Vanžurová
TI  - Cores of Bol loops and symmetric groupoids
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 153
EP  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_3_a12/
LA  - en
ID  - BASM_2005_3_a12
ER  - 
%0 Journal Article
%A A. Vanžurová
%T Cores of Bol loops and symmetric groupoids
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 153-164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_3_a12/
%G en
%F BASM_2005_3_a12
A. Vanžurová. Cores of Bol loops and symmetric groupoids. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2005), pp. 153-164. http://geodesic.mathdoc.fr/item/BASM_2005_3_a12/

[1] Arworn Sr., Denecke K., “Hyperidentities and hypersubstitutions in the variety of symmetric, idempotent, entropic groupoids”, Dem. Math., XXXII:4 (1999), 677–686 | MR

[2] Belousov V. D., Foundations of the theory of guasigroups and loops, Nauka, Moscow, 1967 | MR

[3] Bruck R. H., A Survey of Binary Systems, Springer, Berlin, 1958 | MR | Zbl

[4] Burn R. P., “Finite Bol loops”, Math. Proc. Cambridge Philos. Soc., 84 (1978), 377–385 | DOI | MR | Zbl

[5] Denecke K., Wismath Sh. L., Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC, Boca Raton–London–New York–Washington D. C., 2002 | MR | Zbl

[6] Grätzer G., Universal algebra, Van Nostrand Co., Princeton, New Yersey, 1968 | MR | Zbl

[7] Ihringer Th., Allgemeine Algebra, Teubner, Stuttgart, 1988 | MR | Zbl

[8] Jeřábek E., Kepka T., Stanovský D., Non-idempotent left symmetric left distributive groupoids, Preprint | Zbl

[9] Joyce D., “Aclassifying invariant of knots, the knot quandle”, Jour. of Pure and Appl. Alg., 23 (1982), 37–65 | DOI | MR | Zbl

[10] Kinyon M. K., “Global left loop structures on spheres”, Comment. Math. Univ. Carolinae, 41:2 (2000), 325–346 | MR | Zbl

[11] Lindner C. C., Mendelsohn N. S., “Constructions of $n$-cyclic quasigroups and applications”, Aequat. Math., 14 (1976), 111–121 | DOI | MR | Zbl

[12] Loos O., Symmetric Spaces, J. Benjamin, New York, 1969 | Zbl

[13] Nagy P. T., Strambach K., “Loops, their cores and symmetric spaces”, Israel Jour. of Math., 105 (1998), 285–322 | DOI | MR | Zbl

[14] Nagy P. T., Strambach K., Loops in Group Theory and Lie Theory, De Gruyter, Berlin–New York, 2002 | MR | Zbl

[15] Nobusawa N., “On symmetric structures of a finite set”, Osaka J. Math., 11 (1974), 569–575 | MR | Zbl

[16] Nobusawa N., “Simple symmetric sets and simple groups”, Osaka J. Math., 14 (1977), 411–415 | MR | Zbl

[17] Pflugfelder H. O., Quasigroups and Loops, Introduction, Heldermann Verlag, Berlin, 1990 | MR

[18] Pierce R. S., “Symmetric Groupoids”, Osaka J. Math., 15 (1978), 51–76 | MR | Zbl

[19] Pierce R. S., “Symmetric Groupoids, II”, Osaka J. Math., 16 (1979), 317–348 | MR | Zbl

[20] Romanowska A., Smith J. D. H., Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity, Heldermann Verlag, Berlin, 1985 | MR | Zbl

[21] Roszkowska B., “The lattice of varieties of symmetric idempotent entropic groupoids”, Demonstratio Math., XX:1–2 (1987), 259–275 | MR

[22] Roszkowska B., “On some varieties of symmetric idempotent entropic groupoids”, Universal and Applied Algebra, eds. K. Hałkowska, B. Stawski, World Scientific, 1989, 254–274 | MR

[23] Roszkowska-Lech B., “A representation of symmetric idempotent and entropic groupoids”, Demonstratio Math., XXXII:2 (1999), 247–262 | MR

[24] Roszkowska-Lech B., “Subdirectly irreducible symmetric idempotent and entropic groupoids”, Demonstratio Math., XXXII:3 (1999), 469–484 | MR

[25] Smith J. D. H., “Modes and modals”, Discussiones Math., Algebra and Stochastic Methods, 19 (1999), 9–40 | MR | Zbl

[26] Stanovský D., Left distributive groupoids, Diploma Thesis, Charles Univ., Prague

[27] Stanovský D., Left symmetric left distributive operations on a group, Preprint | MR

[28] Takasaki M., “Abstractions of symmetric functions”, Tôhoku Math. J., 49 (1943), 147–207 | MR

[29] Vanžurová A., “Normal form hypersubstitutions with respect to the variety of left symmetric left distributive idempotent groupoids”, Contributions in General Algebra, 14 (2004), 173–187 | Zbl