Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2005_1_a6, author = {C\u{a}t\u{a}lin Liviu Bichir and Adelina Georgescu and Lidia Palese}, title = {A~nonlinear hydrodynamic stability criterion derived by a generalized energy method}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {85--90}, publisher = {mathdoc}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2005_1_a6/} }
TY - JOUR AU - Cătălin Liviu Bichir AU - Adelina Georgescu AU - Lidia Palese TI - A~nonlinear hydrodynamic stability criterion derived by a generalized energy method JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 85 EP - 90 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2005_1_a6/ LA - en ID - BASM_2005_1_a6 ER -
%0 Journal Article %A Cătălin Liviu Bichir %A Adelina Georgescu %A Lidia Palese %T A~nonlinear hydrodynamic stability criterion derived by a generalized energy method %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2005 %P 85-90 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2005_1_a6/ %G en %F BASM_2005_1_a6
Cătălin Liviu Bichir; Adelina Georgescu; Lidia Palese. A~nonlinear hydrodynamic stability criterion derived by a generalized energy method. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 85-90. http://geodesic.mathdoc.fr/item/BASM_2005_1_a6/
[1] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Clarendon, Oxford, 1961 | MR | Zbl
[2] Chandrasekhar S., “On the inhibition of convection by a magnetic field”, Phil. Mag. Sc. Ser., 43:7 (1952), 501–532 | MR | Zbl
[3] Chandrasekhar S., “On the inhibition of convection by a magnetic field, II”, Phil. Mag. Sc. Ser., 45:7 (1954), 1177–1191 | MR
[4] Galdi G. P., “Nonlinear stability analysis of the magnetic Benard problem via a generalized method”, Arch. Rational Mech. Anal., 87 (1985), 167–186 | DOI | MR | Zbl
[5] Georgescu A., Hydrodynamic stability theory, Kluwer, Dordrecht, 1985 | MR | Zbl
[6] Georgescu A., Variational formulation of some non-selfadjoint problems occuring in Benard instablity theory, I, Preprint Series in Mathematics, 35, Institute of Mathematics, Bucharest, Romania, 1977
[7] Georgescu A., Palese L., “Extension of a Joseph criterion to the non linear stability of mechanical equilibria in the presence of thermodiffusive conductivity”, Theoretical and Computational Fluid Dynamics, 8 (1996), 403–413 | Zbl
[8] Georgescu A., Palese L., Redaelli A., “On a new method in hydrodynamic stability theory”, Math. Sci. Res. Hot-Line, 4:7 (2000), 1–16 | MR | Zbl
[9] Georgescu A., Palese L., Redaelli A., “The complete form of the Joseph extended criterion”, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., XLVIII (2001), 9–12 | MR
[10] Girault V., Raviart P.-A., Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer, Berlin, 1986 | MR | Zbl
[11] Joseph D. D., “Global stability of the conduction-diffusion solution”, ARMA, 36:4 (1970), 285–292 | DOI | MR | Zbl
[12] Joseph D. D., Stability of Fluid Motions, I, II, Springer, Berlin, 1976 | MR
[13] Mulone G., Rionero S., “Necessary and sufficient conditions for nonlinear stability in the magnetic Benard problem”, ARMA, 166 (2003), 197–218 | DOI | MR | Zbl
[14] Nakagawa Y., “An experiment on the inhibition of thermal convection by a magnetic field”, Nature, 175 (1955), 417–419 | DOI
[15] Nakagawa Y., “Experiments on the inhibition of thermal convection by a magnetic field”, Proc. Royal Soc. (London), A 240 (1957), 108–113 | DOI
[16] Rionero S., Mulone G., “A non-linear stability analysis of the magnetic Benard problem through the Lyapunov direct method”, ARMA, 103:4 (1988), 347–368 | DOI | MR | Zbl
[17] Rionero S., “Sulla stabilità asintotica in media in magnetoidrodinamica”, Ann. Mat. Pura Appl., 76 (1967), 75–92 | DOI | MR | Zbl
[18] Rionero S., “Sulla stabilità asintotica in media in magnetoidrodinamica non isoterma”, Ricerche Mat., 16 (1967), 250–263 | MR
[19] Rionero S., “Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica”, Ann. Mat. Pura Appl., 78 (1968), 339–364 | DOI | MR | Zbl
[20] Rionero S., “Sulla stabilità magnetoidrodinamica non lineare asintotica in media con vari tipi di condizioni al contorno”, Ricerche di Mat., 17 (1968), 64–78 | MR | Zbl
[21] Rionero S., “On magnetohydrodynamic stability”, Quaderni di Matematica, 1 (1997), 347–376 | MR | Zbl
[22] Straughan B., The Energy Method, Stability, and Nonlinear Convection, Springer, New-York, 2004 | MR
[23] Temam R., Navier-Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1979 | MR | Zbl
[24] Thompson W. B., “Thermal convection in a magnetic field”, Phil. Mag. Sc. Ser., 42:7 (1951), 1417–1432 | MR | Zbl