Absolute Asymptotic Stability of Discrete Linear Inclusions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 43-68
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the study of absolute asymptotic stability of discrete linear inclusions in Banach (both finite and infinite dimensional) space. We establish the relation between absolute asymptotic stability, asymptotic stability, uniform asymptotic stability and uniform exponential stability. It is proved that for asymptotical compact (a sum of compact operator and contraction) discrete linear inclusions the notions of asymptotic stability and uniform exponential stability are equivalent. It is proved that finite-dimensional discrete linear inclusion, defined by matrices $\{A_1,A_2,\dots,A_m\}$, is absolutely asymptotically stable if it does not admit nontrivial bounded full trajectories and at least one of the matrices $\{A_1,A_2,\dots,A_m\}$ is asymptotically stable. We study this problem in the framework of non-autonomous dynamical systems (cocyles).
@article{BASM_2005_1_a4,
author = {D. Cheban and C. Mammana},
title = {Absolute {Asymptotic} {Stability} of {Discrete} {Linear} {Inclusions}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {43--68},
publisher = {mathdoc},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/}
}
TY - JOUR AU - D. Cheban AU - C. Mammana TI - Absolute Asymptotic Stability of Discrete Linear Inclusions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2005 SP - 43 EP - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/ LA - en ID - BASM_2005_1_a4 ER -
D. Cheban; C. Mammana. Absolute Asymptotic Stability of Discrete Linear Inclusions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 43-68. http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/