Absolute Asymptotic Stability of Discrete Linear Inclusions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 43-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of absolute asymptotic stability of discrete linear inclusions in Banach (both finite and infinite dimensional) space. We establish the relation between absolute asymptotic stability, asymptotic stability, uniform asymptotic stability and uniform exponential stability. It is proved that for asymptotical compact (a sum of compact operator and contraction) discrete linear inclusions the notions of asymptotic stability and uniform exponential stability are equivalent. It is proved that finite-dimensional discrete linear inclusion, defined by matrices $\{A_1,A_2,\dots,A_m\}$, is absolutely asymptotically stable if it does not admit nontrivial bounded full trajectories and at least one of the matrices $\{A_1,A_2,\dots,A_m\}$ is asymptotically stable. We study this problem in the framework of non-autonomous dynamical systems (cocyles).
@article{BASM_2005_1_a4,
     author = {D. Cheban and C. Mammana},
     title = {Absolute {Asymptotic} {Stability} of {Discrete} {Linear} {Inclusions}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {43--68},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/}
}
TY  - JOUR
AU  - D. Cheban
AU  - C. Mammana
TI  - Absolute Asymptotic Stability of Discrete Linear Inclusions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2005
SP  - 43
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/
LA  - en
ID  - BASM_2005_1_a4
ER  - 
%0 Journal Article
%A D. Cheban
%A C. Mammana
%T Absolute Asymptotic Stability of Discrete Linear Inclusions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2005
%P 43-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/
%G en
%F BASM_2005_1_a4
D. Cheban; C. Mammana. Absolute Asymptotic Stability of Discrete Linear Inclusions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2005), pp. 43-68. http://geodesic.mathdoc.fr/item/BASM_2005_1_a4/

[1] Alekseev V. M., Symbolic Dynamics, Naukova Dumka, Kiev, 1986

[2] Artzrouni M., “On the Convergence of Infinite Products of Matrices”, Linear Algebra and its Applications, 74 (1986), 11–21 | DOI | MR | Zbl

[3] Beyn W.-J., Elsner L., “Infinite Products and Paracontracting Matrices”, The Electronic Journal of Linear Algebra, 2 (1997), 1–8 | MR | Zbl

[4] Bourbaki N., Variétés Différentielles et Analitiques (Fascicule de résultats), Herman, Paris, 1971 | MR

[5] Bronsteyn I. U., Extensions of Minimal Transformation Group, Noordhoff, 1979

[6] Bronstein I. U., Nonautonomous Dynamical Systems, Stiintsa, Chişinău, 1984

[7] Bru R., Elsner L., Neumann M., “Convergence of Infinite Products of Matrices and Inner-Outher Iteration Schemes”, Electronic Transactions on Numerical Analysis, 2 (1994), 183–194 | MR

[8] Cheban D. N., “Boundedness, dissipativity and almost periodicity of the solutions of linear and weakly nonlinear systems of differential equations”, Dinamicheskie Sistemy i Kraevye Zadachi, Mat. Issled., 92, Stiintsa, Chişinău, 1987, 143–159 | MR

[9] Cheban D. N., “Global attractors of infinite-dimensional systems, I”, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 1994, no. 2(15), 12–21 | MR | Zbl

[10] Mathematical Notes, 63:1 (1998), 115–126 | MR | Zbl

[11] Cheban D. N., “Uniform exponential stability of linear almost periodic systems in Banach spaces”, Electronic Journal of Differential Equations, 2000, no. 29, 1–18 | MR

[12] Cheban D. N., Global Attractors of Nonautonomous Dynamical Systems, State University of Moldova, 2002 (in Russian)

[13] Cheban D. N., Global Attractors of Non-autonomous Dissipstive Dynamical Systems, World Scientific, 2004 | MR | Zbl

[14] Cheban D. N., Mammana C., “Relation between Different Types of Global Attractors of Non-Autonomous Set-Valued Dynamical Systems”, Set-Valued analysis, 13:3 (2005), 291–321 | DOI | MR

[15] Cheban D. N., Mammana C., “Asymptotic Stability of Autonomous and Non-Autonomous Discrete Linear Inclusions”, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 2004, no. 3(46), 41–52 | MR | Zbl

[16] Daubechies I., Lagarias J. C., “Sets of Matrices All Infnite Products of Which Converge”, Linear Algebra Appl., 161 (1992), 227–263 | DOI | MR | Zbl

[17] Elsner L., Friedland S., “Norm Conditions for Convergence of Infinite Products”, Linear Algebra Appl., 250 (1997), 133–142 | DOI | MR | Zbl

[18] Elsner L., Koltracht I., Neumann M., “On the Convergence of Asynchronous Paracontractions with Applications to Tomographic Reconstruction from Incomplete Data”, Linear Algebra Appl., 130 (1990), 65–82 | DOI | MR | Zbl

[19] Gurvits L., Geometrical Approach to Some Problems of Control, Observation and Lumping, Ph. D. Thesis, Dept. of Mathematics, Gorky State Univ., USSR, 1985

[20] Gurvits L. N., Zaharin A. M., “System Theoretic and Graph Theoretic Aspects of Markov Chains Lumping”, 5th International Conference on Mathematical Statistics, Vilnius, 1989 | Zbl

[21] Gurvits L. N., Zaharin A. M., Lumpability of Markov Processes and Systems Theory, MTNS, Amsterdam, 1989

[22] Gurvits L., “Stability of Discrete Linear Inclusion”, Linear Algebra and its Applications, 231 (1995), 47–85 | MR | Zbl

[23] Hale J. K., Asymptotic Behaviour of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988

[24] Husemoller D., Fibre Bundles, Springer-Verlag, Berlin–Heidelberg–New York, 1994 | MR

[25] Kato J., Nakajima F., “On Sacker-Sell's theorem for a linear skew product flow”, Tohoku Math. J. (2), 28:1 (1976), 79–88 | DOI | MR | Zbl

[26] Kelley J., General Topology, D. Van Norstand Company Inc., Toronto–New York–London, 1957 | MR

[27] Automat. Remote Control, 51:10, part 1 (1990), 1349–1355 | MR | Zbl

[28] Ladyzhenskaya O. A., Attractors for Semigroups and Evolution Equations, Lizioni Lincei, Cambridge Univ. Press, Cambridge–New-York, 1991 | MR

[29] Molchanov A. P., “Lyapunov function for nonlinear discrete-time control systems”, Avtomatika i Telemekhanika, 6 (1987), 26–35 | MR | Zbl

[30] Opoitsev V. I., “Stability of nonautonomous systems”, Avtomatika i Telemekhanika, 10 (1986), 56–63 | MR

[31] Robinson C., Dynamical Systems: Stabilty, Symbolic Dynamics and Chaos, Studies in Advanced Mathematics, CRC Press, Boca Raton Florida, 1995 | MR

[32] Rota G. C., Strang W. G., “A Note on the Joint Spectral Radius”, Indag. Math., 22 (1969), 379–381 | MR

[33] Sacker R. J., Sell G. R., “Existence of Dichotomies and Invariant Splittings for Linear Differential Systems, I”, Journal of Differential Equations, 15 (1975), 429–458 | DOI | MR

[34] Sadovsky B. M., “Condensing and asymptotic compact operators”, Uspekhi Mat. Nauk, 27:1(163) (1972), 81–146 | MR | Zbl

[35] Sell G. R., You Y., Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002 | MR

[36] Sell G. R., Lectures on Topological Dynamics and Differential Equations, Van Nostrand Reinhold math. studies, 2, Van Nostrand-Reinbold, London, 1971 | MR

[37] Shcherbakov B. A., Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Sţiinţa, Chişinău, 1972 (in Russian) | MR

[38] Shcherbakov B. A., Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations, Sţiinţa, Chişinău, 1985 (in Russian) | MR

[39] Sibirskii K. S., Shube A. S., Semidynamical Systems, Sţiinţa, Chişinău, 1987 (in Russian) | MR

[40] Vladimirov A., Elsner L., Beyn W.-J., “Stability and paracontractivity of discrete linear inclusion”, Linear Algebra and its Applications, 312 (2000), 125–134 | DOI | MR | Zbl

[41] De Vries J., Elements of Topological Dynamics, Mathematics and Its Applications, 257, Kluwer Academic Publishers, Dordecht–Boston–London, 1993 | MR | Zbl