$GL(2,R)$-orbits of the polynomial sistems of differential equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 25-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we study the orbits of the polynomial systems $\dot x=P(x_1,x_2)$, $\dot x=Q(x_1,x_2)$ by the action of the group of linear transformations $GL(2,R)$. It is shown that there are not polynomial systems with the dimension of $GL$-orbits equal to one and there exist $GL$-orbits of the dimension zero only for linear systems. On the basis of the dimension of $GL$-orbits the classification of polynomial systems with a singular point $O(0,0)$ with real and distinct eigenvalues is obtained. It is proved that on $GL$-orbits of the dimension less than four these systems are Darboux integrable.
@article{BASM_2004_3_a3,
     author = {Angela P\u{a}\c{s}canu and Alexandru \c{S}ub\u{a}},
     title = {$GL(2,R)$-orbits of the polynomial sistems of differential equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {25--40},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_3_a3/}
}
TY  - JOUR
AU  - Angela Păşcanu
AU  - Alexandru Şubă
TI  - $GL(2,R)$-orbits of the polynomial sistems of differential equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 25
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_3_a3/
LA  - en
ID  - BASM_2004_3_a3
ER  - 
%0 Journal Article
%A Angela Păşcanu
%A Alexandru Şubă
%T $GL(2,R)$-orbits of the polynomial sistems of differential equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 25-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_3_a3/
%G en
%F BASM_2004_3_a3
Angela Păşcanu; Alexandru Şubă. $GL(2,R)$-orbits of the polynomial sistems of differential equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2004), pp. 25-40. http://geodesic.mathdoc.fr/item/BASM_2004_3_a3/