@article{BASM_2004_1_a13,
author = {E. V. Starus},
title = {The classification of $GL(2,R)$-orbits' dimensions for system $s(0,2)$ and the factorsystem $s(0,1,2)/GL(2,R)$},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {120--123},
year = {2004},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a13/}
}
TY - JOUR AU - E. V. Starus TI - The classification of $GL(2,R)$-orbits' dimensions for system $s(0,2)$ and the factorsystem $s(0,1,2)/GL(2,R)$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2004 SP - 120 EP - 123 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASM_2004_1_a13/ LA - en ID - BASM_2004_1_a13 ER -
%0 Journal Article %A E. V. Starus %T The classification of $GL(2,R)$-orbits' dimensions for system $s(0,2)$ and the factorsystem $s(0,1,2)/GL(2,R)$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2004 %P 120-123 %N 1 %U http://geodesic.mathdoc.fr/item/BASM_2004_1_a13/ %G en %F BASM_2004_1_a13
E. V. Starus. The classification of $GL(2,R)$-orbits' dimensions for system $s(0,2)$ and the factorsystem $s(0,1,2)/GL(2,R)$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 120-123. http://geodesic.mathdoc.fr/item/BASM_2004_1_a13/
[1] Boularas D., Calin Iu. F., Timochouk L. A., Vulpe N. I., $T$-comitants of quadratic systems: a study via the translation invariants, Report 96-90, University of Technology, Delft, The Netherlands, 1996
[2] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chisinau, 2001 (in Russian) | Zbl
[3] Starus E. V., “Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system”, Buletinul Academiei de S̆tiint̆e a Republicii Moldova, Matematica, 2003, no. 3(43), 58–70 | MR
[4] Ovsyannikov L. V., Group analysis of the differential equations, Nauka, Moscow, 1978 (in Russian) ; 1982 (in English) | MR
[5] Sibirsky K. S., Lunkevichi V. A., “Integrals of common quadratic differential system in the centers' cases”, Differential Equations, 18:5 (1982), 786–792 (In Russian) | MR
[6] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Shtiintsa, Kishinev, 1982 (in Russian) ; 1988 (in English) | MR | Zbl