The radical theory of convolution rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 98-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convolution rings have been defined as a unifying approach to a number of ring constructions, e.g. polynomials, matrices, necklace rings and incidence algebras. Here the radical theory of convolution rings will be investigated.
@article{BASM_2004_1_a11,
     author = {Stefan Veldsman},
     title = {The radical theory of convolution rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {98--115},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2004_1_a11/}
}
TY  - JOUR
AU  - Stefan Veldsman
TI  - The radical theory of convolution rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2004
SP  - 98
EP  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2004_1_a11/
LA  - en
ID  - BASM_2004_1_a11
ER  - 
%0 Journal Article
%A Stefan Veldsman
%T The radical theory of convolution rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2004
%P 98-115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2004_1_a11/
%G en
%F BASM_2004_1_a11
Stefan Veldsman. The radical theory of convolution rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2004), pp. 98-115. http://geodesic.mathdoc.fr/item/BASM_2004_1_a11/

[1] Amitsur S. A., “Radicals of polynomial rings”, Canad. J. Math., 8 (1956), 335–361 | MR

[2] Amitsur S. A., “Nil radicals; Historical notes and some new results”, Rings, Modules and Radicals, Colloq. Math. Soc. Janos Bolyai, 6, Keszthely, Hungary, 1971, 46–65 | MR

[3] Divinsky N. J., Rings and Radicals, George Allen and Unwin Ltd., London, 1965 | MR | Zbl

[4] Krempa J., “On radical properties of polynomial rings”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20 (1972), 545–548 | MR | Zbl

[5] Krempa J., “Radicals of semi-group rings”, Fund. Math., 85 (1974), 57–71 | MR | Zbl

[6] Ortiz A., “A construction in general radical theory”, Canad. J. Math., 22 (1970), 1097–1100 | MR | Zbl

[7] Parmenter M. M., Spiegel E., “Algebraic properties of necklace rings”, Comm. Algebra, 26 (1998), 1625–1632 | DOI | MR | Zbl

[8] Patterson E. M., “On the radicals of rings of row-finite matrices”, Proc. Royal Soc. Edinburgh, 66 (1962), 42–46 | MR | Zbl

[9] Puczyłowski E. R., “Radicals of polynomial rings power series rings and tensor products”, Comm. Algebra, 8 (1980), 1699–1709 | DOI | MR | Zbl

[10] Puczyłowski E. R., “Radicals of polynomial rings in non-commuting indeterminates”, Math. Z., 182 (1983), 63–67 | DOI | MR | Zbl

[11] Sands A. D., “On radicals of infinite matrix rings”, Proc. Edinburgh Math. Soc., 16 (1969), 195–203 | DOI | MR | Zbl

[12] Sands A. D., “Radicals of structural matrix rings”, Quaest. Math., 13 (1990), 77–81 | MR | Zbl

[13] Sierpińska A., “Radicals of rings of polynomials in non-commutative indeterminates”, Bull. Acad. Pol. Sci., 21 (1973), 805–808 | MR | Zbl

[14] Smoktunowich A., “Polynomial rings over nil rings need not be nil”, J. Algebra, 233 (2000), 427–436 | DOI | MR

[15] Spiegel E., O'Donell C. J., Incidence Algebras, Marcel Dekker Inc., New York, 1997 | MR | Zbl

[16] Tumurbat S., Wiegandt R., Radicals of polynomial rings, Manuscript

[17] Van Wyk L., “Special radicals in structural matrix rings”, Comm. Algebra, 16 (1988), 421–435 | DOI | MR | Zbl

[18] Veldsman S., “On the radicals of structural matrix rings”, Monat. Math., 122 (1996), 227–238 | DOI | MR | Zbl

[19] Veldsman S., “The general radical theory of incidence algebras”, Comm. Algebra, 27 (1999), 3659–3673 | DOI | MR | Zbl

[20] Veldsman S., “Necklace rings and their radicals”, Math. Pannonica, 12 (2001), 269–289 | MR | Zbl

[21] Veldsman S., “Radicals and splitting extensions of rings”, Quaest. Math., 23 (2000), 21–36 | MR | Zbl

[22] Veldsman S., Convolution Rings, Submitted