Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 58-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional system of two autonomous polynomial equations with homogeneities of the zero and third orders is considered concerning to the group of center-affine transformations $GL(2,R)$. The problem of the classification of $GL(2,R)$-orbit's dimensions is solved completely for the given system with the help of Lie algebra of operators corresponding to the $GL(2,R)$ group, and algebra of invariants and comitants for the indicated system is built. The theorem on invariant division of all coefficient's set of the considered system to nonintersecting $GL(2,R)$-invariant sets is obtained.
@article{BASM_2003_3_a5,
     author = {E. V. Starus},
     title = {Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {58--70},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/}
}
TY  - JOUR
AU  - E. V. Starus
TI  - Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 58
EP  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/
LA  - en
ID  - BASM_2003_3_a5
ER  - 
%0 Journal Article
%A E. V. Starus
%T Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 58-70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/
%G en
%F BASM_2003_3_a5
E. V. Starus. Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 58-70. http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/

[1] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chisinau, 2001 (in Russian) | Zbl

[2] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Shtiintsa, Kishinev, 1986 (in Russian) | MR | Zbl

[3] Naidenova E., “Generators for the algebras $S_{0,3}$ and $SI_{0,3}$”, First Conference of Mathematical Society of Republic of Moldova (Chisinau, August 16–18, 2001), 100

[4] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Shtiintsa, Kishinev, 1982 (in Russian) ; 1988 (in English) | MR | Zbl