Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_3_a5, author = {E. V. Starus}, title = {Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {58--70}, publisher = {mathdoc}, number = {3}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/} }
TY - JOUR AU - E. V. Starus TI - Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2003 SP - 58 EP - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/ LA - en ID - BASM_2003_3_a5 ER -
%0 Journal Article %A E. V. Starus %T Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2003 %P 58-70 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/ %G en %F BASM_2003_3_a5
E. V. Starus. Invariant conditions for the dimensions of the $GL(2,R)$-orbits for one differential cubic system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2003), pp. 58-70. http://geodesic.mathdoc.fr/item/BASM_2003_3_a5/
[1] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chisinau, 2001 (in Russian) | Zbl
[2] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Shtiintsa, Kishinev, 1986 (in Russian) | MR | Zbl
[3] Naidenova E., “Generators for the algebras $S_{0,3}$ and $SI_{0,3}$”, First Conference of Mathematical Society of Republic of Moldova (Chisinau, August 16–18, 2001), 100
[4] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Shtiintsa, Kishinev, 1982 (in Russian) ; 1988 (in English) | MR | Zbl