Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 28-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Newton's restricted problem of four bodies is investigated. It has been shown that there are six equilibrium solutions of the equations of motion. Stability of these solutions is analyzed in linear approximation with computer algebra system Mathematica. It has been proved that four radial solutions are unstable while two bisector solutions are stable if the mass of the central body $P_0$ is large enough. There is also a domain of instability of the bisector solutions near the resonant point in the space of parameters and its boundaries are found in linear approximation.
@article{BASM_2003_2_a2,
     author = {E. A. Grebenikov and A. N. Prokopenya},
     title = {Studying stability of the equilibrium solutions in the restricted {Newton's} problem of four bodies},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {28--36},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/}
}
TY  - JOUR
AU  - E. A. Grebenikov
AU  - A. N. Prokopenya
TI  - Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 28
EP  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/
LA  - en
ID  - BASM_2003_2_a2
ER  - 
%0 Journal Article
%A E. A. Grebenikov
%A A. N. Prokopenya
%T Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 28-36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/
%G en
%F BASM_2003_2_a2
E. A. Grebenikov; A. N. Prokopenya. Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 28-36. http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/

[1] Szebehely V., Theory of orbits. The restricted problem of three bodies, Academic Press, New York–London, 1967 | Zbl

[2] Markeev A. P., The points of libration in celestial mechanics and cosmic dynamics, Nauka, Moscow, 1978 (in Russian)

[3] Perko L. M., Walter E. L., “Regular Polygon Solutions of the $N$-Body Problem”, Proc. American Math. Soc., 94:2 (1985), 301–309 | DOI | MR | Zbl

[4] Elmabsout B., “Sur l'existence de certaines configurations d'equilibre relatif dans le probleme des $N$ corps”, Celestial Mechanics, 41 (1988), 131–151 | DOI | MR | Zbl

[5] Grebenikov E. A., “New exact solutions in the plain symmetrical $(n+1)$-body problem”, Romanian Astronomical Journal, 7:2 (1997), 151–156 | MR

[6] Grebenikov E. A., “Two new dynamical models in celestial mechanics”, Romanian Astronomical Journal, 8:1 (1998), 13–19

[7] Grebenikov E. A., Kozak-Skovorodkin D., Jakubiak M., The methods of computer algebra in the many-body problem, Ed. RUDN, Moscow, 2002

[8] Prokopenya A. N., Chichurin A. V., Usage of the System Mathematica for Solving Ordinary Differential Equations, BSU, Minsk, 1999

[9] Prokopenya A. N., “Calculation of the Characteristic Exponents for a Hill's Equation”, Proc. 8th Rhine Workshop on Computer Algebra (March 21–22, 2002, Mannheim, Germany), eds. H. Kredel, W. K. Seiler, University of Mannheim, 2002, 275–278

[10] Erouguin N. P., Linear Systems of Differential Equations, Byelorussian Academy of Sciences, Minsk, 1963 (in Russian)

[11] Yakubovich V. A., Starzhinskii V. M., Linear differential equations with periodic coefficients, John Wiley, New York, 1975 | MR | Zbl