Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2003_2_a2, author = {E. A. Grebenikov and A. N. Prokopenya}, title = {Studying stability of the equilibrium solutions in the restricted {Newton's} problem of four bodies}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {28--36}, publisher = {mathdoc}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/} }
TY - JOUR AU - E. A. Grebenikov AU - A. N. Prokopenya TI - Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2003 SP - 28 EP - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/ LA - en ID - BASM_2003_2_a2 ER -
%0 Journal Article %A E. A. Grebenikov %A A. N. Prokopenya %T Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2003 %P 28-36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/ %G en %F BASM_2003_2_a2
E. A. Grebenikov; A. N. Prokopenya. Studying stability of the equilibrium solutions in the restricted Newton's problem of four bodies. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2003), pp. 28-36. http://geodesic.mathdoc.fr/item/BASM_2003_2_a2/
[1] Szebehely V., Theory of orbits. The restricted problem of three bodies, Academic Press, New York–London, 1967 | Zbl
[2] Markeev A. P., The points of libration in celestial mechanics and cosmic dynamics, Nauka, Moscow, 1978 (in Russian)
[3] Perko L. M., Walter E. L., “Regular Polygon Solutions of the $N$-Body Problem”, Proc. American Math. Soc., 94:2 (1985), 301–309 | DOI | MR | Zbl
[4] Elmabsout B., “Sur l'existence de certaines configurations d'equilibre relatif dans le probleme des $N$ corps”, Celestial Mechanics, 41 (1988), 131–151 | DOI | MR | Zbl
[5] Grebenikov E. A., “New exact solutions in the plain symmetrical $(n+1)$-body problem”, Romanian Astronomical Journal, 7:2 (1997), 151–156 | MR
[6] Grebenikov E. A., “Two new dynamical models in celestial mechanics”, Romanian Astronomical Journal, 8:1 (1998), 13–19
[7] Grebenikov E. A., Kozak-Skovorodkin D., Jakubiak M., The methods of computer algebra in the many-body problem, Ed. RUDN, Moscow, 2002
[8] Prokopenya A. N., Chichurin A. V., Usage of the System Mathematica for Solving Ordinary Differential Equations, BSU, Minsk, 1999
[9] Prokopenya A. N., “Calculation of the Characteristic Exponents for a Hill's Equation”, Proc. 8th Rhine Workshop on Computer Algebra (March 21–22, 2002, Mannheim, Germany), eds. H. Kredel, W. K. Seiler, University of Mannheim, 2002, 275–278
[10] Erouguin N. P., Linear Systems of Differential Equations, Byelorussian Academy of Sciences, Minsk, 1963 (in Russian)
[11] Yakubovich V. A., Starzhinskii V. M., Linear differential equations with periodic coefficients, John Wiley, New York, 1975 | MR | Zbl