New constructive methods for analysis of resonant systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 69-77

Voir la notice de l'article provenant de la source Math-Net.Ru

The modern theory of perturbations, based on the Krylov–Bogolyubov method [1], has two essential advantages: the determination of the iterations does not require the preliminary solution of the generating equation and the choice of the initial conditions, which for every approximation minimizes the difference “exact solution minus asymptotic solution”. The algorithm of constructing the perturbed solution may be realized with computer algebra methods.
@article{BASM_2003_1_a6,
     author = {E. A. Grebenikov},
     title = {New constructive methods for analysis of resonant systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {69--77},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2003_1_a6/}
}
TY  - JOUR
AU  - E. A. Grebenikov
TI  - New constructive methods for analysis of resonant systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2003
SP  - 69
EP  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2003_1_a6/
LA  - en
ID  - BASM_2003_1_a6
ER  - 
%0 Journal Article
%A E. A. Grebenikov
%T New constructive methods for analysis of resonant systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2003
%P 69-77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2003_1_a6/
%G en
%F BASM_2003_1_a6
E. A. Grebenikov. New constructive methods for analysis of resonant systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2003), pp. 69-77. http://geodesic.mathdoc.fr/item/BASM_2003_1_a6/