$\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The object of the present paper is to study $\eta $-Ricci solitons on $\eta $-Einstein $(LCS)_n$-manifolds. It is shown that if $\xi $ is a recurrent torse forming $\eta $-Ricci soliton on an $\eta $-Einstein $(LCS)_n$-manifold then $\xi $ is (i) concurrent and (ii) Killing vector field.
Classification : 53B30, 53C15, 53C25
Keywords: $\eta $-Ricci soliton; $\eta $-Einstein manifold; $(LCS)_n$-manifold
@article{AUPO_2016__55_2_a8,
     author = {Hui, Shyamal Kumar and Chakraborty, Debabrata},
     title = {$\eta ${-Ricci} {Solitons} on $\eta ${-Einstein} $(LCS)_n${-Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2016},
     zbl = {1365.53022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/}
}
TY  - JOUR
AU  - Hui, Shyamal Kumar
AU  - Chakraborty, Debabrata
TI  - $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 101
EP  - 109
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/
LA  - en
ID  - AUPO_2016__55_2_a8
ER  - 
%0 Journal Article
%A Hui, Shyamal Kumar
%A Chakraborty, Debabrata
%T $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 101-109
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/
%G en
%F AUPO_2016__55_2_a8
Hui, Shyamal Kumar; Chakraborty, Debabrata. $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/