Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{AUPO_2016__55_2_a8, author = {Hui, Shyamal Kumar and Chakraborty, Debabrata}, title = {$\eta ${-Ricci} {Solitons} on $\eta ${-Einstein} $(LCS)_n${-Manifolds}}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, pages = {101--109}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2016}, zbl = {1365.53022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/} }
TY - JOUR AU - Hui, Shyamal Kumar AU - Chakraborty, Debabrata TI - $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2016 SP - 101 EP - 109 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/ LA - en ID - AUPO_2016__55_2_a8 ER -
%0 Journal Article %A Hui, Shyamal Kumar %A Chakraborty, Debabrata %T $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2016 %P 101-109 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/ %G en %F AUPO_2016__55_2_a8
Hui, Shyamal Kumar; Chakraborty, Debabrata. $\eta $-Ricci Solitons on $\eta $-Einstein $(LCS)_n$-Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a8/