Geometry of Cyclic and Anticylic Algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 23-27.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The article deals with spaces the geometry of which is defined by cyclic and anticyclic algebras. Arbitrary multiplicative function is taken as a fundamental form. Motions are given as linear transformation preserving given multiplicative function.
Classification : 15A66, 53B30, 57R15
Keywords: Cyclic and anticyclic algebras; composition algebras; determinants of elements of linear algebras; multiplicative functions; groups of motions
@article{AUPO_2016__55_2_a2,
     author = {Burlakov, Igor M. and Jukl, Marek},
     title = {Geometry of {Cyclic} and {Anticylic} {Algebras}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {23--27},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2016},
     zbl = {1367.53013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a2/}
}
TY  - JOUR
AU  - Burlakov, Igor M.
AU  - Jukl, Marek
TI  - Geometry of Cyclic and Anticylic Algebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2016
SP  - 23
EP  - 27
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a2/
LA  - en
ID  - AUPO_2016__55_2_a2
ER  - 
%0 Journal Article
%A Burlakov, Igor M.
%A Jukl, Marek
%T Geometry of Cyclic and Anticylic Algebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2016
%P 23-27
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a2/
%G en
%F AUPO_2016__55_2_a2
Burlakov, Igor M.; Jukl, Marek. Geometry of Cyclic and Anticylic Algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 55 (2016) no. 2, pp. 23-27. http://geodesic.mathdoc.fr/item/AUPO_2016__55_2_a2/