Boundedness of Third-order Delay Differential Equations in which $h$ is not necessarily Differentiable
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 63-69.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the boundedness of solutions of some third-order delay differential equation in which $h(x)$ is not necessarily differentiable but satisfy a Routh–Hurwitz condition in a closed interval $[\delta , kab]\subset (0,ab)$.
Classification : 34K20
Keywords: Lyapunov functional; third-order delay differential equation; boundedness
@article{AUPO_2015__54_2_a3,
     author = {Omeike, Mathew O.},
     title = {Boundedness of {Third-order} {Delay} {Differential} {Equations} in which $h$ is not necessarily {Differentiable}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {63--69},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     mrnumber = {3469691},
     zbl = {1356.34069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015__54_2_a3/}
}
TY  - JOUR
AU  - Omeike, Mathew O.
TI  - Boundedness of Third-order Delay Differential Equations in which $h$ is not necessarily Differentiable
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 63
EP  - 69
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015__54_2_a3/
LA  - en
ID  - AUPO_2015__54_2_a3
ER  - 
%0 Journal Article
%A Omeike, Mathew O.
%T Boundedness of Third-order Delay Differential Equations in which $h$ is not necessarily Differentiable
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 63-69
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2015__54_2_a3/
%G en
%F AUPO_2015__54_2_a3
Omeike, Mathew O. Boundedness of Third-order Delay Differential Equations in which $h$ is not necessarily Differentiable. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 2, pp. 63-69. http://geodesic.mathdoc.fr/item/AUPO_2015__54_2_a3/