Some Additive $2-(v, 5,\lambda )$ Designs
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 65-80.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given a finite additive abelian group $G$ and an integer $k$, with $3\le k \le |G|$, denote by $\mathcal {D}_k (G)$ the simple incidence structure whose point-set is $G$ and whose blocks are the $k$-subsets $C = \lbrace c_1, c_2,\dots , c_k\rbrace $ of $G$ such that $c_1 + c_2+\dots +c_k = 0$. It is known (see [Caggegi, A., Di Bartolo, A., Falcone, G.: Boolean 2-designs and the embedding of a 2-design in a group arxiv 0806.3433v2, (2008), 1–8.]) that $\mathcal {D}_k (G)$ is a 2-design, if $G$ is an elementary abelian $p$-group with $p$ a prime divisor of $k$. From [Caggegi, A., Falcone, G., Pavone, M.: On the additivity of block design submitted.] we know that $\mathcal {D}_3(G)$ is a 2-design if and only if $G$ is an elementary abelian 3-group. It is also known (see [Caggegi, A.: Some additive $2-(v,4,\lambda )$ designs Boll. Mat. Pura e Appl. 2 (2009), 1–3.]) that $G$ is necessarily an elementary abelian 2-group, if $\mathcal {D}_4(G)$ is a 2-design. Here we shall prove that $\mathcal {D}_5(G)$ is a 2-design if and only if $G$ is an elementary abelian 5-group.
Classification : 53B20, 53B30, 53C21
Keywords: Conformal mapping; geodesic mapping; conformal-geodesic mapping; initial conditions; (pseudo-) Riemannian space
@article{AUPO_2015__54_1_a4,
     author = {Caggegi, Andrea},
     title = {Some {Additive} $2-(v, 5,\lambda )$ {Designs}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2015},
     mrnumber = {3468601},
     zbl = {1344.05026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a4/}
}
TY  - JOUR
AU  - Caggegi, Andrea
TI  - Some Additive $2-(v, 5,\lambda )$ Designs
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2015
SP  - 65
EP  - 80
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a4/
LA  - en
ID  - AUPO_2015__54_1_a4
ER  - 
%0 Journal Article
%A Caggegi, Andrea
%T Some Additive $2-(v, 5,\lambda )$ Designs
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2015
%P 65-80
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a4/
%G en
%F AUPO_2015__54_1_a4
Caggegi, Andrea. Some Additive $2-(v, 5,\lambda )$ Designs. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 65-80. http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a4/