Existence Results for a Fractional Boundary Value Problem via Critical Point Theory
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 47-64
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we consider the following boundary value problem \[ \left\lbrace \begin{array}{lll} D_{T^{-}}^{\alpha } (D_{0^{+}}^{\alpha } (D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha } u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(0))= D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(T))= 0, \end{array} \right. \] where $0 \alpha \le 1$ and $f\colon [0, T]\times \mathbb {R} \rightarrow \mathbb {R} $ is a continuous function, $D_{0^{+}}^{\alpha }$, $D_{T^{-}}^{\alpha }$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.
Classification :
26A33, 34B15, 58E05
Keywords: Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions
Keywords: Existence results; fractional differential equation; boundary value problem; critical point theory; minimization principle; Mountain pass theorem; Third order; nonlinear differential equation; uniform stability; uniform ultimate boundedness; periodic solutions
@article{AUPO_2015__54_1_a3,
author = {Boucenna, A. and Moussaoui, T.},
title = {Existence {Results} for a {Fractional} {Boundary} {Value} {Problem} via {Critical} {Point} {Theory}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {47--64},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2015},
mrnumber = {3468600},
zbl = {1354.34013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a3/}
}
TY - JOUR AU - Boucenna, A. AU - Moussaoui, T. TI - Existence Results for a Fractional Boundary Value Problem via Critical Point Theory JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2015 SP - 47 EP - 64 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a3/ LA - en ID - AUPO_2015__54_1_a3 ER -
%0 Journal Article %A Boucenna, A. %A Moussaoui, T. %T Existence Results for a Fractional Boundary Value Problem via Critical Point Theory %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2015 %P 47-64 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a3/ %G en %F AUPO_2015__54_1_a3
Boucenna, A.; Moussaoui, T. Existence Results for a Fractional Boundary Value Problem via Critical Point Theory. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 54 (2015) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/AUPO_2015__54_1_a3/