An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 115-138.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper treats about one of the most remarkable achievements by Riemann, that is the symmetric form of the functional equation for $\zeta (s)$. We present here, after showing the first proof of Riemann, a new, simple and direct proof of the symmetric form of the functional equation for both the Eulerian Zeta function and the alternating Zeta function, connected with odd numbers. A proof that Euler himself could have arranged with a little step at the end of his paper “Remarques sur un beau rapport entre les séries des puissances tant direct que réciproches”. This more general functional equation gives origin to a special function,here named $(s)$ which we prove that it can be continued analytically to an entire function over the whole complex plane using techniques similar to those of the second proof of Riemann. Moreover we are able to obtain a connection between Jacobi’s imaginary transformation and an infinite series identity of Ramanujan. Finally, after studying the analytical properties of the function $(s)$, we complete and extend the proof of a Fundamental Theorem, both on the zeros of Riemann Zeta function and on the zeros of Dirichlet Beta function, using also the Euler–Boole summation formula.
Classification : 11B68, 11M06, 11M26
Keywords: Riemann Zeta; Dirichlet Beta; generalized Riemann hypothesis; series representations
@article{AUPO_2014__53_2_a7,
     author = {Ossicini, Andrea},
     title = {An {Alternative} {Form} of the {Functional} {Equation} for {Riemann{\textquoteright}s} {Zeta} {Function,} {II}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {115--138},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2014},
     mrnumber = {3331010},
     zbl = {1308.11078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014__53_2_a7/}
}
TY  - JOUR
AU  - Ossicini, Andrea
TI  - An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 115
EP  - 138
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014__53_2_a7/
LA  - en
ID  - AUPO_2014__53_2_a7
ER  - 
%0 Journal Article
%A Ossicini, Andrea
%T An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 115-138
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2014__53_2_a7/
%G en
%F AUPO_2014__53_2_a7
Ossicini, Andrea. An Alternative Form of the Functional Equation for Riemann’s Zeta Function, II. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 2, pp. 115-138. http://geodesic.mathdoc.fr/item/AUPO_2014__53_2_a7/