Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 91-105.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is concerned with asymptotic analysis of strongly decaying solutions of the third-order singular differential equation $x^{\prime \prime \prime }+q(t)x^{-\gamma }=0$, by means of regularly varying functions, where $\gamma $ is a positive constant and $q$ is a positive continuous function on $[a,\infty )$. It is shown that if $q$ is a regularly varying function, then it is possible to establish necessary and sufficient conditions for the existence of slowly varying solutions and regularly varying solutions of (A) which decrease to $0$ as $t\rightarrow \infty $ and to acquire precise information about the asymptotic behavior at infinity of these solutions. The main tool is the Schauder–Tychonoff fixed point theorem combined with the basic theory of regular variation.
Classification : 26A12, 34C11
Keywords: third order nonlinear differential equation; singular nonlinearity; positive solution; decaying solution; asymptotic behavior; regularly varying functions
@article{AUPO_2014__53_1_a6,
     author = {Ku\v{c}erov\'a, Ivana},
     title = {Decaying {Regularly} {Varying} {Solutions} of {Third-order} {Differential} {Equations} with a {Singular} {Nonlinearity}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     mrnumber = {3331073},
     zbl = {1311.34069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a6/}
}
TY  - JOUR
AU  - Kučerová, Ivana
TI  - Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 91
EP  - 105
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a6/
LA  - en
ID  - AUPO_2014__53_1_a6
ER  - 
%0 Journal Article
%A Kučerová, Ivana
%T Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 91-105
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a6/
%G en
%F AUPO_2014__53_1_a6
Kučerová, Ivana. Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 91-105. http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a6/