Modal Pseudocomplemented De Morgan Algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 65-79.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
Classification : 03G99, 06D15, 06D30
Keywords: pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences
@article{AUPO_2014__53_1_a4,
     author = {Figallo, Aldo V. and Oliva, Nora and Ziliani, Alicia},
     title = {Modal {Pseudocomplemented} {De~Morgan} {Algebras}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {65--79},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     mrnumber = {3331071},
     zbl = {06416942},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/}
}
TY  - JOUR
AU  - Figallo, Aldo V.
AU  - Oliva, Nora
AU  - Ziliani, Alicia
TI  - Modal Pseudocomplemented De Morgan Algebras
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2014
SP  - 65
EP  - 79
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/
LA  - en
ID  - AUPO_2014__53_1_a4
ER  - 
%0 Journal Article
%A Figallo, Aldo V.
%A Oliva, Nora
%A Ziliani, Alicia
%T Modal Pseudocomplemented De Morgan Algebras
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2014
%P 65-79
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/
%G en
%F AUPO_2014__53_1_a4
Figallo, Aldo V.; Oliva, Nora; Ziliani, Alicia. Modal Pseudocomplemented De Morgan Algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/