Modal Pseudocomplemented De Morgan Algebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 65-79
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described.
Classification :
03G99, 06D15, 06D30
Keywords: pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences
Keywords: pseudocomplemented De Morgan algebras; Priestley spaces; discriminator varieties; congruences
@article{AUPO_2014__53_1_a4,
author = {Figallo, Aldo V. and Oliva, Nora and Ziliani, Alicia},
title = {Modal {Pseudocomplemented} {De~Morgan} {Algebras}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {65--79},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2014},
mrnumber = {3331071},
zbl = {06416942},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/}
}
TY - JOUR AU - Figallo, Aldo V. AU - Oliva, Nora AU - Ziliani, Alicia TI - Modal Pseudocomplemented De Morgan Algebras JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2014 SP - 65 EP - 79 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/ LA - en ID - AUPO_2014__53_1_a4 ER -
%0 Journal Article %A Figallo, Aldo V. %A Oliva, Nora %A Ziliani, Alicia %T Modal Pseudocomplemented De Morgan Algebras %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2014 %P 65-79 %V 53 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/ %G en %F AUPO_2014__53_1_a4
Figallo, Aldo V.; Oliva, Nora; Ziliani, Alicia. Modal Pseudocomplemented De Morgan Algebras. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 53 (2014) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/AUPO_2014__53_1_a4/