Common Fixed Point Theorems in a Complete 2-metric Space
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 79-87.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and $A$-contraction type condition and then extend the theorem for a class of mappings.
Classification : 47H10, 54H25
Keywords: fixed point; common fixed point; 2-metric space; completeness
@article{AUPO_2013__52_1_a6,
     author = {Dey, Debashis and Saha, Mantu},
     title = {Common {Fixed} {Point} {Theorems} in a {Complete} 2-metric {Space}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {79--87},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     mrnumber = {3202751},
     zbl = {1285.54034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a6/}
}
TY  - JOUR
AU  - Dey, Debashis
AU  - Saha, Mantu
TI  - Common Fixed Point Theorems in a Complete 2-metric Space
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 79
EP  - 87
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a6/
LA  - en
ID  - AUPO_2013__52_1_a6
ER  - 
%0 Journal Article
%A Dey, Debashis
%A Saha, Mantu
%T Common Fixed Point Theorems in a Complete 2-metric Space
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 79-87
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a6/
%G en
%F AUPO_2013__52_1_a6
Dey, Debashis; Saha, Mantu. Common Fixed Point Theorems in a Complete 2-metric Space. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 79-87. http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a6/