Varieties of Distributive Rotational Lattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.
Classification :
06B20, 06B75, 06D99
Keywords: rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety
Keywords: rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety
@article{AUPO_2013__52_1_a5,
author = {Cz\'edli, G\'abor and Nagy, Ildik\'o V.},
title = {Varieties of {Distributive} {Rotational} {Lattices}},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {71--78},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2013},
mrnumber = {3202750},
zbl = {06285755},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/}
}
TY - JOUR AU - Czédli, Gábor AU - Nagy, Ildikó V. TI - Varieties of Distributive Rotational Lattices JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2013 SP - 71 EP - 78 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/ LA - en ID - AUPO_2013__52_1_a5 ER -
%0 Journal Article %A Czédli, Gábor %A Nagy, Ildikó V. %T Varieties of Distributive Rotational Lattices %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2013 %P 71-78 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/ %G en %F AUPO_2013__52_1_a5
Czédli, Gábor; Nagy, Ildikó V. Varieties of Distributive Rotational Lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/