Varieties of Distributive Rotational Lattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.
Classification : 06B20, 06B75, 06D99
Keywords: rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety
@article{AUPO_2013__52_1_a5,
     author = {Cz\'edli, G\'abor and Nagy, Ildik\'o V.},
     title = {Varieties of {Distributive} {Rotational} {Lattices}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {71--78},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     mrnumber = {3202750},
     zbl = {06285755},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/}
}
TY  - JOUR
AU  - Czédli, Gábor
AU  - Nagy, Ildikó V.
TI  - Varieties of Distributive Rotational Lattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 71
EP  - 78
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/
LA  - en
ID  - AUPO_2013__52_1_a5
ER  - 
%0 Journal Article
%A Czédli, Gábor
%A Nagy, Ildikó V.
%T Varieties of Distributive Rotational Lattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 71-78
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/
%G en
%F AUPO_2013__52_1_a5
Czédli, Gábor; Nagy, Ildikó V. Varieties of Distributive Rotational Lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a5/