Some Common Fixed Point Theorems in Menger Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 57-69.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we prove some common fixed point theorems for occasionally weakly compatible mappings in Menger spaces. An example is also given to illustrate the main result. As applications to our results, we obtain the corresponding fixed point theorems in metric spaces. Our results improve and extend many known results existing in the literature.
Classification : 47H10, 54H25
Keywords: Menger space; weakly compatible mappings; occasionally weakly compatible mappings; fixed point
@article{AUPO_2013__52_1_a4,
     author = {Chauhan, Sunny and Pant, B. D.},
     title = {Some {Common} {Fixed} {Point} {Theorems} in {Menger} {Spaces}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     mrnumber = {3202749},
     zbl = {1285.54032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a4/}
}
TY  - JOUR
AU  - Chauhan, Sunny
AU  - Pant, B. D.
TI  - Some Common Fixed Point Theorems in Menger Spaces
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2013
SP  - 57
EP  - 69
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a4/
LA  - en
ID  - AUPO_2013__52_1_a4
ER  - 
%0 Journal Article
%A Chauhan, Sunny
%A Pant, B. D.
%T Some Common Fixed Point Theorems in Menger Spaces
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2013
%P 57-69
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a4/
%G en
%F AUPO_2013__52_1_a4
Chauhan, Sunny; Pant, B. D. Some Common Fixed Point Theorems in Menger Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 52 (2013) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/AUPO_2013__52_1_a4/