On Equational Theory of Left Divisible Left Distributive Groupoids
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 67-72.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is an open question whether the variety generated by the left divisible left distributive groupoids coincides with the variety generated by the left distributive left quasigroups. In this paper we prove that every left divisible left distributive groupoid with the mapping $a\mapsto a^2$ surjective lies in the variety generated by the left distributive left quasigroups.
Classification : 20N02, 20N05 08B15
Keywords: left distributivity; left idempotency; variety
@article{AUPO_2012__51_2_a5,
     author = {Jedli\v{c}ka, P\v{r}emysl},
     title = {On {Equational} {Theory} of {Left} {Divisible} {Left} {Distributive} {Groupoids}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     mrnumber = {3058874},
     zbl = {06204931},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012__51_2_a5/}
}
TY  - JOUR
AU  - Jedlička, Přemysl
TI  - On Equational Theory of Left Divisible Left Distributive Groupoids
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 67
EP  - 72
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012__51_2_a5/
LA  - en
ID  - AUPO_2012__51_2_a5
ER  - 
%0 Journal Article
%A Jedlička, Přemysl
%T On Equational Theory of Left Divisible Left Distributive Groupoids
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 67-72
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2012__51_2_a5/
%G en
%F AUPO_2012__51_2_a5
Jedlička, Přemysl. On Equational Theory of Left Divisible Left Distributive Groupoids. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 2, pp. 67-72. http://geodesic.mathdoc.fr/item/AUPO_2012__51_2_a5/