Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 101-109.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isometric actions with two totally geodesic singular orbits. These singular orbits are not reflective submanifolds of the ambient spaces. We prove that the radial unit vector fields associated to these isometric actions are harmonic and minimal.
Classification : 53C35, 53C40, 53C42, 53C43, 57S15
Keywords: harmonic unit vector field; minimal unit vector field; Lie group; Riemannian symmetric space; isometric action
@article{AUPO_2012__51_1_a7,
     author = {Verh\'oczki, L\'aszl\'o},
     title = {Harmonic and {Minimal} {Unit} {Vector} {Fields} on the {Symmetric} {Spaces} $G_2$ and $G_2/SO(4)$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     mrnumber = {3060012},
     zbl = {06204924},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a7/}
}
TY  - JOUR
AU  - Verhóczki, László
TI  - Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 101
EP  - 109
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a7/
LA  - en
ID  - AUPO_2012__51_1_a7
ER  - 
%0 Journal Article
%A Verhóczki, László
%T Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 101-109
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a7/
%G en
%F AUPO_2012__51_1_a7
Verhóczki, László. Harmonic and Minimal Unit Vector Fields on the Symmetric Spaces $G_2$ and $G_2/SO(4)$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 101-109. http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a7/