A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 89-100.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we introduce a new sequence space $ BV_{\sigma }(\mathcal {M},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal {M} = (M_k)$ and study some topological properties of this sequence space.
Classification : 40A05, 40D05, 46A45
Keywords: paranorm space; invariant mean; orlicz function; Musielak–orlicz function; $n$-normed space; solid
@article{AUPO_2012__51_1_a6,
     author = {Raj, Kuldip and Sharma, Sunil K.},
     title = {A {New} {Sequence} {Space} {Defined} by a {Sequence} of {Orlicz} {Functions} over $n${-Normed} {Spaces}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     mrnumber = {3060011},
     zbl = {06204923},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a6/}
}
TY  - JOUR
AU  - Raj, Kuldip
AU  - Sharma, Sunil K.
TI  - A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2012
SP  - 89
EP  - 100
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a6/
LA  - en
ID  - AUPO_2012__51_1_a6
ER  - 
%0 Journal Article
%A Raj, Kuldip
%A Sharma, Sunil K.
%T A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2012
%P 89-100
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a6/
%G en
%F AUPO_2012__51_1_a6
Raj, Kuldip; Sharma, Sunil K. A New Sequence Space Defined by a Sequence of Orlicz Functions over $n$-Normed Spaces. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 51 (2012) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/AUPO_2012__51_1_a6/