On Weakly $W_3$-Symmetric Manifolds
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 53-71.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The object of the present paper is to study weakly $W_3$-symmetric manifolds and its decomposability with the existence of such notions. Among others it is shown that in a decomposable weakly $W_3$-symmetric manifold both the decompositions are weakly Ricci symmetric.
Classification : 53B05, 53B35, 53C15, 53C25
Keywords: weakly $W_3$-symmetric manifold; $W_3$-curvature tensor; decomposable manifold; scalar curvature; totally umbilical hypersurfaces; totally geodesic; mean curvature
@article{AUPO_2011__50_1_a5,
     author = {Hui, Shyamal Kumar},
     title = {On {Weakly} $W_3${-Symmetric} {Manifolds}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {53--71},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2011},
     mrnumber = {2920699},
     zbl = {1252.53020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a5/}
}
TY  - JOUR
AU  - Hui, Shyamal Kumar
TI  - On Weakly $W_3$-Symmetric Manifolds
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 53
EP  - 71
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a5/
LA  - en
ID  - AUPO_2011__50_1_a5
ER  - 
%0 Journal Article
%A Hui, Shyamal Kumar
%T On Weakly $W_3$-Symmetric Manifolds
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 53-71
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a5/
%G en
%F AUPO_2011__50_1_a5
Hui, Shyamal Kumar. On Weakly $W_3$-Symmetric Manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 53-71. http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a5/