Complex Oscillation Theory of Differential Polynomials
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 43-52.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we investigate the relationship between small functions and differential polynomials $g_{f}(z)=d_{2}f^{\prime \prime }+d_{1}f^{\prime }+d_{0}f$, where $d_{0}(z)$, $d_{1}(z)$, $d_{2}(z)$ are entire functions that are not all equal to zero with $\rho (d_j)1$ $(j=0,1,2) $ generated by solutions of the differential equation $f^{\prime \prime }+A_{1}(z) e^{az}f^{\prime }+A_{0}(z) e^{bz}f=F$, where $a,b$ are complex numbers that satisfy $ab( a-b) \ne 0$ and $A_{j}( z) \lnot \equiv 0$ ($j=0,1$), $F(z) \lnot \equiv 0$ are entire functions such that $\max \left\lbrace \rho (A_j),\, j=0,1,\, \rho (F)\right\rbrace 1.$
Classification : 30D35, 34M10
Keywords: linear differential equations; differential polynomials; entire solutions; order of growth; exponent of convergence of zeros; exponent of convergence of distinct zeros
@article{AUPO_2011__50_1_a4,
     author = {El Farissi, Abdallah and Bela{\"\i}di, Benharrat},
     title = {Complex {Oscillation} {Theory} of {Differential} {Polynomials}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2011},
     mrnumber = {2920698},
     zbl = {1244.34108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a4/}
}
TY  - JOUR
AU  - El Farissi, Abdallah
AU  - Belaïdi, Benharrat
TI  - Complex Oscillation Theory of Differential Polynomials
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 43
EP  - 52
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a4/
LA  - en
ID  - AUPO_2011__50_1_a4
ER  - 
%0 Journal Article
%A El Farissi, Abdallah
%A Belaïdi, Benharrat
%T Complex Oscillation Theory of Differential Polynomials
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 43-52
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a4/
%G en
%F AUPO_2011__50_1_a4
El Farissi, Abdallah; Belaïdi, Benharrat. Complex Oscillation Theory of Differential Polynomials. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a4/