Sets Expressible as Unions of Staircase $n$-Convex Polygons
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 23-28.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $k$ and $n$ be fixed, $k\ge 1$, $n \ge 1$, and let $S$ be a simply connected orthogonal polygon in the plane. For $T \subseteq S, T$ lies in a staircase $n$-convex orthogonal polygon $P$ in $S$ if and only if every two points of $T$ see each other via staircase $n$-paths in $S$. This leads to a characterization for those sets $S$ expressible as a union of $k$ staircase $n$-convex polygons $P_i$, $1 \le i \le k$.
Classification : 52A35
Keywords: orthogonal polygons; staircase $n$-convex polygons
@article{AUPO_2011__50_1_a2,
     author = {Breen, Marilyn},
     title = {Sets {Expressible} as {Unions} of {Staircase} $n${-Convex} {Polygons}},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2011},
     mrnumber = {2920696},
     zbl = {1244.52009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a2/}
}
TY  - JOUR
AU  - Breen, Marilyn
TI  - Sets Expressible as Unions of Staircase $n$-Convex Polygons
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2011
SP  - 23
EP  - 28
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a2/
LA  - en
ID  - AUPO_2011__50_1_a2
ER  - 
%0 Journal Article
%A Breen, Marilyn
%T Sets Expressible as Unions of Staircase $n$-Convex Polygons
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2011
%P 23-28
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a2/
%G en
%F AUPO_2011__50_1_a2
Breen, Marilyn. Sets Expressible as Unions of Staircase $n$-Convex Polygons. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 50 (2011) no. 1, pp. 23-28. http://geodesic.mathdoc.fr/item/AUPO_2011__50_1_a2/