Medial quasigroups of type $(n,k)$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 107-122.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied).
Classification : 05B25, 20N05
Keywords: Quasigroup; idempotent groupoid term; mediality; incidence structure; parallelism; affine space; desarguesian affine plane
@article{AUPO_2010__49_2_a8,
     author = {Van\v{z}urov\'a, Alena},
     title = {Medial quasigroups of type $(n,k)$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {107--122},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2010},
     mrnumber = {2796951},
     zbl = {1236.20066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010__49_2_a8/}
}
TY  - JOUR
AU  - Vanžurová, Alena
TI  - Medial quasigroups of type $(n,k)$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 107
EP  - 122
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010__49_2_a8/
LA  - en
ID  - AUPO_2010__49_2_a8
ER  - 
%0 Journal Article
%A Vanžurová, Alena
%T Medial quasigroups of type $(n,k)$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 107-122
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2010__49_2_a8/
%G en
%F AUPO_2010__49_2_a8
Vanžurová, Alena. Medial quasigroups of type $(n,k)$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 2, pp. 107-122. http://geodesic.mathdoc.fr/item/AUPO_2010__49_2_a8/