The multicores in metric spaces and their application in fixed point theory
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 75-94
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper discusses the notion, the properties and the application of multicores, i.e. some compact sets contained in metric spaces.
Classification :
47H10, 54C55, 54H25, 55M20
Keywords: Lefschetz number; fixed point; topological vector spaces; Klee admissible spaces; absolute neighborhood multi-retracts; approximative absolute neighborhood multi-retracts; multicore
Keywords: Lefschetz number; fixed point; topological vector spaces; Klee admissible spaces; absolute neighborhood multi-retracts; approximative absolute neighborhood multi-retracts; multicore
@article{AUPO_2010__49_1_a7,
author = {\'Slosarski, Miros{\l}aw},
title = {The multicores in metric spaces and their application in fixed point theory},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {75--94},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {2010},
mrnumber = {2797525},
zbl = {1253.55002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a7/}
}
TY - JOUR AU - Ślosarski, Mirosław TI - The multicores in metric spaces and their application in fixed point theory JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2010 SP - 75 EP - 94 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a7/ LA - en ID - AUPO_2010__49_1_a7 ER -
%0 Journal Article %A Ślosarski, Mirosław %T The multicores in metric spaces and their application in fixed point theory %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2010 %P 75-94 %V 49 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a7/ %G en %F AUPO_2010__49_1_a7
Ślosarski, Mirosław. The multicores in metric spaces and their application in fixed point theory. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 75-94. http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a7/