On common fixed point theorems for three and four self mappings satisfying contractive conditions
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 25-31.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this contribution, we discuss some unique common fixed point theorems for three and four occasionally weakly compatible mappings satisfying different types of contractive condition.
Classification : 47H10, 54H25
Keywords: Occasionally weakly compatible mappings; contractive modulus function; common fixed point theorems
@article{AUPO_2010__49_1_a2,
     author = {Bouhadjera, Hakima},
     title = {On common fixed point theorems for three and four self mappings satisfying contractive conditions},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2010},
     mrnumber = {2797520},
     zbl = {05978035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a2/}
}
TY  - JOUR
AU  - Bouhadjera, Hakima
TI  - On common fixed point theorems for three and four self mappings satisfying contractive conditions
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2010
SP  - 25
EP  - 31
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a2/
LA  - en
ID  - AUPO_2010__49_1_a2
ER  - 
%0 Journal Article
%A Bouhadjera, Hakima
%T On common fixed point theorems for three and four self mappings satisfying contractive conditions
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2010
%P 25-31
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a2/
%G en
%F AUPO_2010__49_1_a2
Bouhadjera, Hakima. On common fixed point theorems for three and four self mappings satisfying contractive conditions. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 49 (2010) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/AUPO_2010__49_1_a2/