Classes of filters in generalizations of commutative fuzzy structures
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 93-107.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.
Classification : 03G25, 06D35, 06F05
Keywords: Residuated $\ell $-monoid; deductive system; $\mathit {BL}$-algebra; $\mathit {MV}$-algebra; Heyting algebra; filter
@article{AUPO_2009__48_1_a8,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i} and \v{S}alounov\'a, Dana},
     title = {Classes of filters in generalizations of commutative fuzzy structures},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {93--107},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2009},
     mrnumber = {2641951},
     zbl = {1203.03091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a8/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
AU  - Šalounová, Dana
TI  - Classes of filters in generalizations of commutative fuzzy structures
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 93
EP  - 107
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a8/
LA  - en
ID  - AUPO_2009__48_1_a8
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%A Šalounová, Dana
%T Classes of filters in generalizations of commutative fuzzy structures
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 93-107
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a8/
%G en
%F AUPO_2009__48_1_a8
Rachůnek, Jiří; Šalounová, Dana. Classes of filters in generalizations of commutative fuzzy structures. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a8/