Suitability of linearization of nonlinear problems not only in biology and medicine
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 171-188.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Biology and medicine are not the only fields that present problems unsolvable through a linear models approach. One way to overcome this obstacle is to use nonlinear methods, even though these are not as thoroughly explored. Another possibility is to linearize and transform the originally nonlinear task to make it accessible to linear methods. In this aricle I investigate an easy and quick criterion to verify suitability of linearization of nonlinear problems via Taylor series expansion so that linear models with type II constraints could be used.
Classification : 62F30, 62H12, 62H99, 62J02, 62J05, 65C60
Keywords: Linear models with constraints; compartmental analysis; nonlinear models; linearization via a Taylor series
@article{AUPO_2009__48_1_a14,
     author = {Vrbkov\'a, Jana},
     title = {Suitability of linearization of nonlinear problems not only in biology and~medicine},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {171--188},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2009},
     mrnumber = {2641957},
     zbl = {1191.62120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a14/}
}
TY  - JOUR
AU  - Vrbková, Jana
TI  - Suitability of linearization of nonlinear problems not only in biology and medicine
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2009
SP  - 171
EP  - 188
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a14/
LA  - en
ID  - AUPO_2009__48_1_a14
ER  - 
%0 Journal Article
%A Vrbková, Jana
%T Suitability of linearization of nonlinear problems not only in biology and medicine
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2009
%P 171-188
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a14/
%G en
%F AUPO_2009__48_1_a14
Vrbková, Jana. Suitability of linearization of nonlinear problems not only in biology and medicine. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 48 (2009) no. 1, pp. 171-188. http://geodesic.mathdoc.fr/item/AUPO_2009__48_1_a14/