Frankl’s conjecture for large semimodular and planar semimodular lattices
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 47-53.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A lattice $L$ is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element $f\in L$ such that at most half of the elements $x$ of $L$ satisfy $f\le x$. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let $m$ denote the number of nonzero join-irreducible elements of $L$. It is well-known that $L$ consists of at most $2^m$ elements. Let us say that $L$ is large if it has more than $5\cdot 2^{m-3}$ elements. It is shown that every large semimodular lattice satisfies Frankl’s conjecture. The second result states that every finite semimodular planar lattice $L$ satisfies Frankl’s conjecture. If, in addition, $L$ has at least four elements and its largest element is join-reducible then there are at least two choices for the above-mentioned $f$.
Classification : 05A05, 05B35, 06A07, 06E99
Keywords: union-closed sets; Frankl’s conjecture; lattice; semimodularity; planar lattice
@article{AUPO_2008__47_1_a4,
     author = {Cz\'edli, G\'abor and Schmidt, E. Tam\'as},
     title = {Frankl{\textquoteright}s conjecture for large semimodular and planar semimodular lattices},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {47--53},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2008},
     mrnumber = {2482716},
     zbl = {1187.05002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a4/}
}
TY  - JOUR
AU  - Czédli, Gábor
AU  - Schmidt, E. Tamás
TI  - Frankl’s conjecture for large semimodular and planar semimodular lattices
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2008
SP  - 47
EP  - 53
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a4/
LA  - en
ID  - AUPO_2008__47_1_a4
ER  - 
%0 Journal Article
%A Czédli, Gábor
%A Schmidt, E. Tamás
%T Frankl’s conjecture for large semimodular and planar semimodular lattices
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2008
%P 47-53
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a4/
%G en
%F AUPO_2008__47_1_a4
Czédli, Gábor; Schmidt, E. Tamás. Frankl’s conjecture for large semimodular and planar semimodular lattices. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 47-53. http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a4/