Further results on global stability of solutions of certain third-order nonlinear differential equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 121-127
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Sufficient conditions are established for the global stability of solutions of certain third-order nonlinear differential equations. Our result improves on Tunc’s [10].
Classification :
34D23
Keywords: nonlinear differential equation; trivial solution; global stability; Lyapunov’s method
Keywords: nonlinear differential equation; trivial solution; global stability; Lyapunov’s method
@article{AUPO_2008__47_1_a10,
author = {Omeike, Mathew Omonigho},
title = {Further results on global stability of solutions of certain third-order nonlinear differential equations},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {121--127},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2008},
mrnumber = {2482722},
zbl = {1177.34072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a10/}
}
TY - JOUR AU - Omeike, Mathew Omonigho TI - Further results on global stability of solutions of certain third-order nonlinear differential equations JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2008 SP - 121 EP - 127 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a10/ LA - en ID - AUPO_2008__47_1_a10 ER -
%0 Journal Article %A Omeike, Mathew Omonigho %T Further results on global stability of solutions of certain third-order nonlinear differential equations %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2008 %P 121-127 %V 47 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a10/ %G en %F AUPO_2008__47_1_a10
Omeike, Mathew Omonigho. Further results on global stability of solutions of certain third-order nonlinear differential equations. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 47 (2008) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/AUPO_2008__47_1_a10/