Bol-loops of order $3\cdot 2^n$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article we construct proper Bol-loops of order $3\cdot 2^n$ using a generalisation of the semidirect product of groups defined by Birkenmeier and Xiao. Moreover we classify the obtained loops up to isomorphism.
Classification : 20N05
Keywords: bol-loop; loop; group; semidirect product
@article{AUPO_2007__46_1_a8,
     author = {Wagner, Daniel and Wopperer, Stefan},
     title = {Bol-loops of order $3\cdot 2^n$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {85--88},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2007},
     mrnumber = {2387496},
     zbl = {1143.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2007__46_1_a8/}
}
TY  - JOUR
AU  - Wagner, Daniel
AU  - Wopperer, Stefan
TI  - Bol-loops of order $3\cdot 2^n$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2007
SP  - 85
EP  - 88
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2007__46_1_a8/
LA  - en
ID  - AUPO_2007__46_1_a8
ER  - 
%0 Journal Article
%A Wagner, Daniel
%A Wopperer, Stefan
%T Bol-loops of order $3\cdot 2^n$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2007
%P 85-88
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2007__46_1_a8/
%G en
%F AUPO_2007__46_1_a8
Wagner, Daniel; Wopperer, Stefan. Bol-loops of order $3\cdot 2^n$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 46 (2007) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/AUPO_2007__46_1_a8/