Periodic BVP with $\phi$-Laplacian and impulses
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 131-150
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper deals with the impulsive boundary value problem \[ \frac{d}{dt}[\phi (y^{\prime }(t))] = f(t, y(t), y^{\prime }(t)), \quad y(0) = y(T),\quad y^{\prime }(0) = y^{\prime }(T), y(t_{i}+) = J_{i}(y(t_{i})), \quad y^{\prime }(t_{i}+) = M_{i}(y^{\prime }(t_{i})),\quad i = 1, \ldots m. \] The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions.
Classification :
34B37, 34C25
Keywords: $\phi $-Laplacian; impulses; lower and upper functions; periodic boundary value problem
Keywords: $\phi $-Laplacian; impulses; lower and upper functions; periodic boundary value problem
@article{AUPO_2005__44_1_a11,
author = {Pol\'a\v{s}ek, Vladim{\'\i}r},
title = {Periodic {BVP} with $\phi${-Laplacian} and impulses},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {131--150},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2005},
mrnumber = {2218573},
zbl = {1097.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2005__44_1_a11/}
}
TY - JOUR AU - Polášek, Vladimír TI - Periodic BVP with $\phi$-Laplacian and impulses JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2005 SP - 131 EP - 150 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2005__44_1_a11/ LA - en ID - AUPO_2005__44_1_a11 ER -
%0 Journal Article %A Polášek, Vladimír %T Periodic BVP with $\phi$-Laplacian and impulses %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2005 %P 131-150 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2005__44_1_a11/ %G en %F AUPO_2005__44_1_a11
Polášek, Vladimír. Periodic BVP with $\phi$-Laplacian and impulses. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 44 (2005) no. 1, pp. 131-150. http://geodesic.mathdoc.fr/item/AUPO_2005__44_1_a11/